NAG CL Interface
f08bpc (ztpqrt)

Settings help

CL Name Style:


1 Purpose

f08bpc computes the QR factorization of a complex (m+n)×n triangular-pentagonal matrix.

2 Specification

#include <nag.h>
void  f08bpc (Nag_OrderType order, Integer m, Integer n, Integer l, Integer nb, Complex a[], Integer pda, Complex b[], Integer pdb, Complex t[], Integer pdt, NagError *fail)
The function may be called by the names: f08bpc, nag_lapackeig_ztpqrt or nag_ztpqrt.

3 Description

f08bpc forms the QR factorization of a complex (m+n)×n triangular-pentagonal matrix C,
C= ( A B )  
where A is an upper triangular n×n matrix and B is an m×n pentagonal matrix consisting of an (m-l)×n rectangular matrix B1 on top of an l×n upper trapezoidal matrix B2:
B= ( B1 B2 ) .  
The upper trapezoidal matrix B2 consists of the first l rows of an n×n upper triangular matrix, where 0lmin(m,n). If l=0, B is m×n rectangular; if l=n and m=n, B is upper triangular.
A recursive, explicitly blocked, QR factorization (see f08apc) is performed on the matrix C. The upper triangular matrix R, details of the unitary matrix Q, and further details (the block reflector factors) of Q are returned.
Typically the matrix A or B2 contains the matrix R from the QR factorization of a subproblem and f08bpc performs the QR update operation from the inclusion of matrix B1.
For example, consider the QR factorization of an l×n matrix B^ with l<n: B^ = Q^R^ , R^ = ( R1^ R2^ ) , where R1^ is l×l upper triangular and R2^ is (n-l)×n rectangular (this can be performed by f08apc). Given an initial least squares problem B^ X^ = Y^ where X and Y are l×nrhs matrices, we have R^ X^ = Q^H Y^ .
Now, adding an additional m-l rows to the original system gives the augmented least squares problem
BX=Y  
where B is an m×n matrix formed by adding m-l rows on top of R^ and Y is an m×nrhs matrix formed by adding m-l rows on top of Q^HY^.
f08bpc can then be used to perform the QR factorization of the pentagonal matrix B; the n×n matrix A will be zero on input and contain R on output.
In the case where B^ is r×n, rn, R^ is n×n upper triangular (forming A) on top of r-n rows of zeros (forming first r-n rows of B). Augmentation is then performed by adding rows to the bottom of B with l=0.

4 References

Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel QR Factorization Leads to Better Performance IBM Journal of Research and Development. (Volume 44) 4 605–624
Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore

5 Arguments

1: order Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2: m Integer Input
On entry: m, the number of rows of the matrix B.
Constraint: m0.
3: n Integer Input
On entry: n, the number of columns of the matrix B and the order of the upper triangular matrix A.
Constraint: n0.
4: l Integer Input
On entry: l, the number of rows of the trapezoidal part of B (i.e., B2).
Constraint: 0lmin(m,n).
5: nb Integer Input
On entry: the explicitly chosen block-size to be used in the algorithm for computing the QR factorization. See Section 9 for details.
Constraints:
  • nb1;
  • if n>0, nbn.
6: a[dim] Complex Input/Output
Note: the dimension, dim, of the array a must be at least max(1,pda×n).
The (i,j)th element of the matrix A is stored in
  • a[(j-1)×pda+i-1] when order=Nag_ColMajor;
  • a[(i-1)×pda+j-1] when order=Nag_RowMajor.
On entry: the n×n upper triangular matrix A.
On exit: the upper triangle is overwritten by the corresponding elements of the n×n upper triangular matrix R.
7: pda Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraint: pdamax(1,n).
8: b[dim] Complex Input/Output
Note: the dimension, dim, of the array b must be at least
  • max(1,pdb×n) when order=Nag_ColMajor;
  • max(1,m×pdb) when order=Nag_RowMajor.
The (i,j)th element of the matrix B is stored in
  • b[(j-1)×pdb+i-1] when order=Nag_ColMajor;
  • b[(i-1)×pdb+j-1] when order=Nag_RowMajor.
On entry: the m×n pentagonal matrix B composed of an (m-l)×n rectangular matrix B1 above an l×n upper trapezoidal matrix B2.
On exit: details of the unitary matrix Q.
9: pdb Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraints:
  • if order=Nag_ColMajor, pdbmax(1,m);
  • if order=Nag_RowMajor, pdbmax(1,n).
10: t[dim] Complex Output
Note: the dimension, dim, of the array t must be at least
  • max(1,pdt×n) when order=Nag_ColMajor;
  • max(1,nb×pdt) when order=Nag_RowMajor.
The (i,j)th element of the matrix T is stored in
  • t[(j-1)×pdt+i-1] when order=Nag_ColMajor;
  • t[(i-1)×pdt+j-1] when order=Nag_RowMajor.
On exit: further details of the unitary matrix Q. The number of blocks is b=knb, where k=min(m,n) and each block is of order nb except for the last block, which is of order k-(b-1)×nb. For each of the blocks, an upper triangular block reflector factor is computed: T1,T2,,Tb. These are stored in the nb×n matrix T as T=[T1|T2||Tb].
11: pdt Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array t.
Constraints:
  • if order=Nag_ColMajor, pdtnb;
  • if order=Nag_RowMajor, pdtn.
12: fail NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, m=value.
Constraint: m0.
On entry, n=value.
Constraint: n0.
NE_INT_2
On entry, nb=value and n=value.
Constraint: nb1 and
if n>0, nbn.
On entry, pda=value and n=value.
Constraint: pdamax(1,n).
On entry, pdb=value and m=value.
Constraint: pdbmax(1,m).
On entry, pdb=value and n=value.
Constraint: pdbmax(1,n).
On entry, pdt=value and n=value.
Constraint: pdtn.
On entry, pdt=value and nb=value.
Constraint: pdtnb.
NE_INT_3
On entry, l=value, m=value and n=value.
Constraint: 0lmin(m,n).
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix (A+E), where
E2 = O(ε) A2 ,  
and ε is the machine precision.

8 Parallelism and Performance

Background information to multithreading can be found in the Multithreading documentation.
f08bpc makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 23 n2 (3m-n) if mn or 23 m2 (3n-m) if m<n.
The block size, nb, used by f08bpc is supplied explicitly through the interface. For moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the algorithm with the optimal value being dependent on problem size and platform. A value of nb=64min(m,n) is likely to achieve good efficiency and it is unlikely that an optimal value would exceed 340.
To apply Q to an arbitrary complex rectangular matrix C, f08bpc may be followed by a call to f08bqc. For example,
nag_lapackeig_ztpmqrt(Nag_ColMajor,Nag_LeftSide,Nag_Trans,m,p,n,l,nb,b,pdb,
t,pdt,c,pdc,&c(n+1,1),ldc,&fail)
forms C=QHC, where C is (m+n)×p.
To form the unitary matrix Q explicitly set p=m+n, initialize C to the identity matrix and make a call to f08bqc as above.

10 Example

This example finds the basic solutions for the linear least squares problems
minimizeAxi-bi2 ,   i=1,2  
where b1 and b2 are the columns of the matrix B,
A = ( 0.96-0.81i -0.03+0.96i -0.91+2.06i -0.05+0.41i -0.98+1.98i -1.20+0.19i -0.66+0.42i -0.81+0.56i 0.62-0.46i 1.01+0.02i 0.63-0.17i -1.11+0.60i -0.37+0.38i 0.19-0.54i -0.98-0.36i 0.22-0.20i 0.83+0.51i 0.20+0.01i -0.17-0.46i 1.47+1.59i 1.08-0.28i 0.20-0.12i -0.07+1.23i 0.26+0.26i )   and    
B= ( -2.09+1.93i 3.26-2.70i 3.34-3.53i -6.22+1.16i -4.94-2.04i 7.94-3.13i 0.17+4.23i 1.04-4.26i -5.19+3.63i -2.31-2.12i 0.98+2.53i -1.39-4.05i ) .  
A QR factorization is performed on the first 4 rows of A using f08apc after which the first 4 rows of B are updated by applying QT using f08aqc. The remaining row is added by performing a QR update using f08bpc; B is updated by applying the new QT using f08bqc; the solution is finally obtained by triangular solve using R from the updated QR.

10.1 Program Text

Program Text (f08bpce.c)

10.2 Program Data

Program Data (f08bpce.d)

10.3 Program Results

Program Results (f08bpce.r)