This manual relates to an old release of the Library.
The documentation for the current release is also available on this site.

NAG CL Interface
G07 (Univar)
Univariate Estimation

Settings help

CL Name Style:


G07 (Univar) Chapter Introduction – A description of the Chapter and an overview of the algorithms available.

Function
Mark of
Introduction

Purpose
g07aac 7 nag_univar_ci_binomial
Computes confidence interval for the parameter of a binomial distribution
g07abc 7 nag_univar_ci_poisson
Computes confidence interval for the parameter of a Poisson distribution
g07bbc 7 nag_univar_estim_normal
Computes maximum likelihood estimates for parameters of the Normal distribution from grouped and/or censored data
g07bec 7 nag_univar_estim_weibull
Computes maximum likelihood estimates for parameters of the Weibull distribution
g07bfc 9 nag_univar_estim_genpareto
Estimates parameter values of the generalized Pareto distribution
g07cac 4 nag_univar_ttest_2normal
Computes t-test statistic for a difference in means between two Normal populations, confidence interval
g07dac 3 nag_univar_robust_1var_median
Robust estimation, median, median absolute deviation, robust standard deviation
g07dbc 4 nag_univar_robust_1var_mestim
Robust estimation, M-estimates for location and scale parameters, standard weight functions
g07dcc 7 nag_univar_robust_1var_mestim_wgt
Robust estimation, M-estimates for location and scale parameters, user-defined weight functions
g07ddc 4 nag_univar_robust_1var_trimmed
Trimmed and winsorized mean of a sample with estimates of the variances of the two means
g07eac 7 nag_univar_robust_1var_ci
Robust confidence intervals, one-sample
g07ebc 7 nag_univar_robust_2var_ci
Robust confidence intervals, two-sample
g07gac 23 nag_univar_outlier_peirce_1var
Outlier detection using method of Peirce, raw data or single variance supplied
g07gbc 23 nag_univar_outlier_peirce_2var
Outlier detection using method of Peirce, two variances supplied