# NAG CL Interfacef16pdc (dsbmv)

Settings help

CL Name Style:

## 1Purpose

f16pdc performs matrix-vector multiplication for a real symmetric band matrix.

## 2Specification

 #include
 void f16pdc (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer k, double alpha, const double ab[], Integer pdab, const double x[], Integer incx, double beta, double y[], Integer incy, NagError *fail)
The function may be called by the names: f16pdc, nag_blast_dsbmv or nag_dsbmv.

## 3Description

f16pdc performs the matrix-vector operation
 $y←αAx+βy,$
where $A$ is an $n×n$ real symmetric band matrix with $k$ subdiagonals and $k$ superdiagonals, $x$ and $y$ are $n$-element real vectors, and $\alpha$ and $\beta$ are real scalars.

## 4References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee https://www.netlib.org/blas/blast-forum/blas-report.pdf

## 5Arguments

1: $\mathbf{order}$Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2: $\mathbf{uplo}$Nag_UploType Input
On entry: specifies whether the upper or lower triangular part of $A$ is stored.
${\mathbf{uplo}}=\mathrm{Nag_Upper}$
The upper triangular part of $A$ is stored.
${\mathbf{uplo}}=\mathrm{Nag_Lower}$
The lower triangular part of $A$ is stored.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
3: $\mathbf{n}$Integer Input
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
4: $\mathbf{k}$Integer Input
On entry: $k$, the number of subdiagonals or superdiagonals of the matrix $A$.
Constraint: ${\mathbf{k}}\ge 0$.
5: $\mathbf{alpha}$double Input
On entry: the scalar $\alpha$.
6: $\mathbf{ab}\left[\mathit{dim}\right]$const double Input
Note: the dimension, dim, of the array ab must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdab}}×{\mathbf{n}}\right)$.
On entry: the $n×n$ symmetric band matrix $A$.
This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements of ${A}_{ij}$, depends on the order and uplo arguments as follows:
if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Upper}$,
${A}_{ij}$ is stored in ${\mathbf{ab}}\left[k+i-j+\left(j-1\right)×{\mathbf{pdab}}\right]$, for $j=1,\dots ,n$ and $i=\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,j-k\right),\dots ,j$;
if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Lower}$,
${A}_{ij}$ is stored in ${\mathbf{ab}}\left[i-j+\left(j-1\right)×{\mathbf{pdab}}\right]$, for $j=1,\dots ,n$ and $i=j,\dots ,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(n,j+k\right)$;
if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Upper}$,
${A}_{ij}$ is stored in ${\mathbf{ab}}\left[j-i+\left(i-1\right)×{\mathbf{pdab}}\right]$, for $i=1,\dots ,n$ and $j=i,\dots ,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(n,i+k\right)$;
if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Lower}$,
${A}_{ij}$ is stored in ${\mathbf{ab}}\left[k+j-i+\left(i-1\right)×{\mathbf{pdab}}\right]$, for $i=1,\dots ,n$ and $j=\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,i-k\right),\dots ,i$.
7: $\mathbf{pdab}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $A$ in the array ab.
Constraint: ${\mathbf{pdab}}\ge {\mathbf{k}}+1$.
8: $\mathbf{x}\left[\mathit{dim}\right]$const double Input
Note: the dimension, dim, of the array x must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)|{\mathbf{incx}}|\right)$.
On entry: the $n$-element vector $x$.
If ${\mathbf{incx}}>0$, ${x}_{\mathit{i}}$ must be stored in ${\mathbf{x}}\left[\left(\mathit{i}-1\right)×{\mathbf{incx}}\right]$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
If ${\mathbf{incx}}<0$, ${x}_{\mathit{i}}$ must be stored in ${\mathbf{x}}\left[\left({\mathbf{n}}-\mathit{i}\right)×|{\mathbf{incx}}|\right]$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
Intermediate elements of x are not referenced. If ${\mathbf{n}}=0$, x is not referenced and may be NULL.
9: $\mathbf{incx}$Integer Input
On entry: the increment in the subscripts of x between successive elements of $x$.
Constraint: ${\mathbf{incx}}\ne 0$.
10: $\mathbf{beta}$double Input
On entry: the scalar $\beta$.
11: $\mathbf{y}\left[\mathit{dim}\right]$double Input/Output
Note: the dimension, dim, of the array y must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)|{\mathbf{incy}}|\right)$.
On entry: the vector $y$. See x for details of storage.
If ${\mathbf{beta}}=0$, y need not be set.
On exit: the updated vector $y$.
12: $\mathbf{incy}$Integer Input
On entry: the increment in the subscripts of y between successive elements of $y$.
Constraint: ${\mathbf{incy}}\ne 0$.
13: $\mathbf{fail}$NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_INT
On entry, ${\mathbf{incx}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{incx}}\ne 0$.
On entry, ${\mathbf{incy}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{incy}}\ne 0$.
On entry, ${\mathbf{k}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{k}}\ge 0$.
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 0$.
NE_INT_2
On entry, ${\mathbf{pdab}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{k}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdab}}\ge {\mathbf{k}}+1$.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

## 7Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

## 8Parallelism and Performance

f16pdc is not threaded in any implementation.

None.

## 10Example

This example computes the matrix-vector product
 $y=αAx+βy$
where
 $A = ( 1.0 2.0 3.0 0.0 0.0 2.0 2.0 3.0 4.0 0.0 3.0 3.0 3.0 4.0 5.0 0.0 4.0 4.0 4.0 5.0 0.0 0.0 5.0 5.0 5.0 ) ,$
 $x = ( -1.0 2.0 -3.0 2.0 -1.0 ) ,$
 $y = ( 10.0 1.5 9.5 8.5 24.0 ) ,$
 $α= 1.5 and β= 1.0 .$

### 10.1Program Text

Program Text (f16pdce.c)

### 10.2Program Data

Program Data (f16pdce.d)

### 10.3Program Results

Program Results (f16pdce.r)