# NAG CL Interfacef07mec (dsytrs)

Settings help

CL Name Style:

## 1Purpose

f07mec solves a real symmetric indefinite system of linear equations with multiple right-hand sides,
 $AX=B ,$
where $A$ has been factorized by f07mdc.

## 2Specification

 #include
 void f07mec (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer nrhs, const double a[], Integer pda, const Integer ipiv[], double b[], Integer pdb, NagError *fail)
The function may be called by the names: f07mec, nag_lapacklin_dsytrs or nag_dsytrs.

## 3Description

f07mec is used to solve a real symmetric indefinite system of linear equations $AX=B$, this function must be preceded by a call to f07mdc which computes the Bunch–Kaufman factorization of $A$.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, $A=PUD{U}^{\mathrm{T}}{P}^{\mathrm{T}}$, where $P$ is a permutation matrix, $U$ is an upper triangular matrix and $D$ is a symmetric block diagonal matrix with $1×1$ and $2×2$ blocks; the solution $X$ is computed by solving $PUDY=B$ and then ${U}^{\mathrm{T}}{P}^{\mathrm{T}}X=Y$.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, $A=PLD{L}^{\mathrm{T}}{P}^{\mathrm{T}}$, where $L$ is a lower triangular matrix; the solution $X$ is computed by solving $PLDY=B$ and then ${L}^{\mathrm{T}}{P}^{\mathrm{T}}X=Y$.

## 4References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5Arguments

1: $\mathbf{order}$Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2: $\mathbf{uplo}$Nag_UploType Input
On entry: specifies how $A$ has been factorized.
${\mathbf{uplo}}=\mathrm{Nag_Upper}$
$A=PUD{U}^{\mathrm{T}}{P}^{\mathrm{T}}$, where $U$ is upper triangular.
${\mathbf{uplo}}=\mathrm{Nag_Lower}$
$A=PLD{L}^{\mathrm{T}}{P}^{\mathrm{T}}$, where $L$ is lower triangular.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
3: $\mathbf{n}$Integer Input
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
4: $\mathbf{nrhs}$Integer Input
On entry: $r$, the number of right-hand sides.
Constraint: ${\mathbf{nrhs}}\ge 0$.
5: $\mathbf{a}\left[\mathit{dim}\right]$const double Input
Note: the dimension, dim, of the array a must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$.
On entry: details of the factorization of $A$, as returned by f07mdc.
6: $\mathbf{pda}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) of the matrix in the array a.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
7: $\mathbf{ipiv}\left[\mathit{dim}\right]$const Integer Input
Note: the dimension, dim, of the array ipiv must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry: details of the interchanges and the block structure of $D$, as returned by f07mdc.
8: $\mathbf{b}\left[\mathit{dim}\right]$double Input/Output
Note: the dimension, dim, of the array b must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdb}}×{\mathbf{nrhs}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×{\mathbf{pdb}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $B$ is stored in
• ${\mathbf{b}}\left[\left(j-1\right)×{\mathbf{pdb}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{b}}\left[\left(i-1\right)×{\mathbf{pdb}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $n×r$ right-hand side matrix $B$.
On exit: the $n×r$ solution matrix $X$.
9: $\mathbf{pdb}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$.
10: $\mathbf{fail}$NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_INT
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{nrhs}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{nrhs}}\ge 0$.
On entry, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pda}}>0$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}>0$.
NE_INT_2
On entry, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{nrhs}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

## 7Accuracy

For each right-hand side vector $b$, the computed solution $x$ is the exact solution of a perturbed system of equations $\left(A+E\right)x=b$, where
• if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, $|E|\le c\left(n\right)\epsilon P|U||D||{U}^{\mathrm{T}}|{P}^{\mathrm{T}}$;
• if ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, $|E|\le c\left(n\right)\epsilon P|L||D||{L}^{\mathrm{T}}|{P}^{\mathrm{T}}$,
$c\left(n\right)$ is a modest linear function of $n$, and $\epsilon$ is the machine precision.
If $\stackrel{^}{x}$ is the true solution, then the computed solution $x$ satisfies a forward error bound of the form
 $‖x-x^‖∞ ‖x‖∞ ≤c(n)cond(A,x)ε$
where $\mathrm{cond}\left(A,x\right)={‖|{A}^{-1}||A||x|‖}_{\infty }/{‖x‖}_{\infty }\le \mathrm{cond}\left(A\right)={‖|{A}^{-1}||A|‖}_{\infty }\le {\kappa }_{\infty }\left(A\right)$.
Note that $\mathrm{cond}\left(A,x\right)$ can be much smaller than $\mathrm{cond}\left(A\right)$.
Forward and backward error bounds can be computed by calling f07mhc, and an estimate for ${\kappa }_{\infty }\left(A\right)$ ($\text{}={\kappa }_{1}\left(A\right)$) can be obtained by calling f07mgc.

## 8Parallelism and Performance

f07mec makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The total number of floating-point operations is approximately $2{n}^{2}r$.
This function may be followed by a call to f07mhc to refine the solution and return an error estimate.
The complex analogues of this function are f07msc for Hermitian matrices and f07nsc for symmetric matrices.

## 10Example

This example solves the system of equations $AX=B$, where
 $A= ( 2.07 3.87 4.20 -1.15 3.87 -0.21 1.87 0.63 4.20 1.87 1.15 2.06 -1.15 0.63 2.06 -1.81 ) and B= ( -9.50 27.85 -8.38 9.90 -6.07 19.25 -0.96 3.93 ) .$
Here $A$ is symmetric indefinite and must first be factorized by f07mdc.

### 10.1Program Text

Program Text (f07mece.c)

### 10.2Program Data

Program Data (f07mece.d)

### 10.3Program Results

Program Results (f07mece.r)