NAG CL Interface
c05rbc (sys_​deriv_​easy)

Settings help

CL Name Style:


1 Purpose

c05rbc is an easy-to-use function that finds a solution of a system of nonlinear equations by a modification of the Powell hybrid method. You must provide the Jacobian.

2 Specification

#include <nag.h>
void  c05rbc (
void (*fcn)(Integer n, const double x[], double fvec[], double fjac[], Nag_Comm *comm, Integer *iflag),
Integer n, double x[], double fvec[], double fjac[], double xtol, Nag_Comm *comm, NagError *fail)
The function may be called by the names: c05rbc, nag_roots_sys_deriv_easy or nag_zero_nonlin_eqns_deriv_easy.

3 Description

The system of equations is defined as:
fi (x1,x2,,xn) = 0 ,   i= 1, 2, , n .  
c05rbc is based on the MINPACK routine HYBRJ1 (see Moré et al. (1980)). It chooses the correction at each step as a convex combination of the Newton and scaled gradient directions. The Jacobian is updated by the rank-1 method of Broyden. At the starting point, the Jacobian is requested, but it is not asked for again until the rank-1 method fails to produce satisfactory progress. For more details see Powell (1970).

4 References

Moré J J, Garbow B S and Hillstrom K E (1980) User guide for MINPACK-1 Technical Report ANL-80-74 Argonne National Laboratory
Powell M J D (1970) A hybrid method for nonlinear algebraic equations Numerical Methods for Nonlinear Algebraic Equations (ed P Rabinowitz) Gordon and Breach

5 Arguments

1: fcn function, supplied by the user External Function
Depending upon the value of iflag, fcn must either return the values of the functions fi at a point x or return the Jacobian at x.
The specification of fcn is:
void  fcn (Integer n, const double x[], double fvec[], double fjac[], Nag_Comm *comm, Integer *iflag)
1: n Integer Input
On entry: n, the number of equations.
2: x[n] const double Input
On entry: the components of the point x at which the functions or the Jacobian must be evaluated.
3: fvec[n] double Input/Output
On entry: if iflag=2 , fvec contains the function values fi(x) and must not be changed.
On exit: if iflag=1 on entry, fvec must contain the function values fi(x) (unless iflag is set to a negative value by fcn).
4: fjac[n×n] double Input/Output
Note: the (i,j)th element of the matrix is stored in fjac[(j-1)×n+i-1].
On entry: if iflag=1 , fjac contains the value of fi xj at the point x, for i=1,2,,n and j=1,2,,n, and must not be changed.
On exit: if iflag=2 on entry, fjac[(j-1)×n+i-1] must contain the value of fi xj at the point x, for i=1,2,,n and j=1,2,,n, (unless iflag is set to a negative value by fcn).
5: comm Nag_Comm *
Pointer to structure of type Nag_Comm; the following members are relevant to fcn.
userdouble *
iuserInteger *
pPointer 
The type Pointer will be void *. Before calling c05rbc you may allocate memory and initialize these pointers with various quantities for use by fcn when called from c05rbc (see Section 3.1.1 in the Introduction to the NAG Library CL Interface).
6: iflag Integer * Input/Output
On entry: iflag=1 or 2.
iflag=1
fvec is to be updated.
iflag=2
fjac is to be updated.
On exit: in general, iflag should not be reset by fcn. If, however, you wish to terminate execution (perhaps because some illegal point x has been reached), iflag should be set to a negative integer.
Note: fcn should not return floating-point NaN (Not a Number) or infinity values, since these are not handled by c05rbc. If your code inadvertently does return any NaNs or infinities, c05rbc is likely to produce unexpected results.
2: n Integer Input
On entry: n, the number of equations.
Constraint: n>0 .
3: x[n] double Input/Output
On entry: an initial guess at the solution vector.
On exit: the final estimate of the solution vector.
4: fvec[n] double Output
On exit: the function values at the final point returned in x.
5: fjac[n×n] double Output
Note: the (i,j)th element of the matrix is stored in fjac[(j-1)×n+i-1].
On exit: the orthogonal matrix Q produced by the QR factorization of the final approximate Jacobian, stored by columns.
6: xtol double Input
On entry: the accuracy in x to which the solution is required.
Suggested value: ε, where ε is the machine precision returned by X02AJC.
Constraint: xtol0.0 .
7: comm Nag_Comm *
The NAG communication argument (see Section 3.1.1 in the Introduction to the NAG Library CL Interface).
8: fail NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, n=value.
Constraint: n>0 .
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_IMPROVEMENT
The iteration is not making good progress. This failure exit may indicate that the system does not have a zero, or that the solution is very close to the origin (see Section 7). Otherwise, rerunning c05rbc from a different starting point may avoid the region of difficulty.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.
NE_REAL
On entry, xtol=value.
Constraint: xtol0.0.
NE_TOO_MANY_FEVALS
There have been at least 100×(n+1) calls to fcn. Consider restarting the calculation from the point held in x.
NE_TOO_SMALL
No further improvement in the solution is possible. xtol is too small: xtol=value.
NE_USER_STOP
iflag was set negative in fcn. iflag=value.

7 Accuracy

If x^ is the true solution, c05rbc tries to ensure that
x-x^2 xtol × x^2 .  
If this condition is satisfied with xtol = 10-k , then the larger components of x have k significant decimal digits. There is a danger that the smaller components of x may have large relative errors, but the fast rate of convergence of c05rbc usually obviates this possibility.
If xtol is less than machine precision and the above test is satisfied with the machine precision in place of xtol, then the function exits with fail.code= NE_TOO_SMALL.
Note:  this convergence test is based purely on relative error, and may not indicate convergence if the solution is very close to the origin.
The convergence test assumes that the functions and the Jacobian are coded consistently and that the functions are reasonably well behaved. If these conditions are not satisfied, then c05rbc may incorrectly indicate convergence. The coding of the Jacobian can be checked using c05zdc. If the Jacobian is coded correctly, then the validity of the answer can be checked by rerunning c05rbc with a lower value for xtol.

8 Parallelism and Performance

Background information to multithreading can be found in the Multithreading documentation.
c05rbc is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
c05rbc makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

Local workspace arrays of fixed lengths are allocated internally by c05rbc. The total size of these arrays amounts to n×(n+13)/2 double elements.
The time required by c05rbc to solve a given problem depends on n, the behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic operations executed by c05rbc is approximately 11.5×n2 to process each evaluation of the functions and approximately 1.3×n3 to process each evaluation of the Jacobian. The timing of c05rbc is strongly influenced by the time spent evaluating the functions.
Ideally the problem should be scaled so that, at the solution, the function values are of comparable magnitude.

10 Example

This example determines the values x1 , , x9 which satisfy the tridiagonal equations:
(3-2x1)x1-2x2 = −1, -xi-1+(3-2xi)xi-2xi+1 = −1,  i=2,3,,8 -x8+(3-2x9)x9 = −1.  

10.1 Program Text

Program Text (c05rbce.c)

10.2 Program Data

None.

10.3 Program Results

Program Results (c05rbce.r)