e04uc
is the AD Library version of the primal routine
e04ucf.
Based (in the C++ interface) on overload resolution,
e04uc can be used for primal, tangent and adjoint
evaluation. It supports tangents and adjoints of first order.
Corresponding to the overloaded C++ function, the Fortran interface provides five routines with names reflecting the type used for active real arguments. The actual subroutine and type names are formed by replacing AD and ADTYPE in the above as follows:
The function is overloaded on ADTYPE which represents the type of active arguments. ADTYPE may be any of the following types: double, dco::ga1s<double>::type, dco::gt1s<double>::type
Note: this function can be used with AD tools other than dco/c++. For details, please contact NAG.
3Description
e04uc
is the AD Library version of the primal routine
e04ucf.
e04ucf is designed to minimize an arbitrary smooth function subject to constraints (which may include simple bounds on the variables, linear constraints and smooth nonlinear constraints) using a Sequential Quadratic Programming (SQP) method. As many first derivatives as possible should be supplied by you; any unspecified derivatives are approximated by finite differences. It is not intended for large sparse problems.
e04ucf may also be used for unconstrained, bound-constrained and linearly constrained optimization.
e04ucf uses forwardcommunication for evaluating the objective function, the nonlinear constraint functions, and any of their derivatives.
For further information see Section 3 in the documentation for e04ucf.
4References
Dennis J E Jr and Moré J J (1977) Quasi-Newton methods, motivation and theory SIAM Rev.19 46–89
Dennis J E Jr and Schnabel R B (1981) A new derivation of symmetric positive-definite secant updates nonlinear programming (eds O L Mangasarian, R R Meyer and S M Robinson) 4 167–199 Academic Press
Dennis J E Jr and Schnabel R B (1983) Numerical Methods for Unconstrained Optimization and Nonlinear Equations Prentice–Hall
Fletcher R (1987) Practical Methods of Optimization (2nd Edition) Wiley
Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) Users' guide for LSSOL (Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University
Gill P E, Murray W, Saunders M A and Wright M H (1984a) Procedures for optimization problems with a mixture of bounds and general linear constraints ACM Trans. Math. Software10 282–298
Gill P E, Murray W, Saunders M A and Wright M H (1984b) Users' guide for SOL/QPSOL version 3.2 Report SOL 84–5 Department of Operations Research, Stanford University
Gill P E, Murray W, Saunders M A and Wright M H (1986a) Some theoretical properties of an augmented Lagrangian merit function Report SOL 86–6R Department of Operations Research, Stanford University
Gill P E, Murray W, Saunders M A and Wright M H (1986b) Users' guide for NPSOL (Version 4.0): a Fortran package for nonlinear programming Report SOL 86-2 Department of Operations Research, Stanford University
Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press
Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems187 Springer–Verlag
Powell M J D (1974) Introduction to constrained optimization Numerical Methods for Constrained Optimization (eds P E Gill and W Murray) 1–28 Academic Press
Powell M J D (1983) Variable metric methods in constrained optimization Mathematical Programming: the State of the Art (eds A Bachem, M Grötschel and B Korte) 288–311 Springer–Verlag
5Arguments
In addition to the arguments present in the interface of the primal routine,
e04uc includes some arguments specific to AD.
A brief summary of the AD specific arguments is given below. For the remainder, links are provided to the corresponding argument from the primal routine.
A tooltip popup for all arguments can be found by hovering over the argument name in Section 2 and in this section.
On entry: a configuration object that holds information on the differentiation strategy. Details on setting the AD strategy are described in AD handle object in the NAG AD Library Introduction.
confun
needs to be callable with the specification listed below. This can be a C++ lambda, a functor or a (static member) function pointer.
If using a lambda, parameters can be captured safely by reference. No copies of the callable are made internally.
If a null pointer is used as the argument, then a NAG supplied routine will be used as the argument for this parameter (C++ only).
For the Fortran interface, the NAG supplied routine e04ud_AD_m may be used as the actual argument for this parameter.
objfun
needs to be callable with the specification listed below. This can be a C++ lambda, a functor or a (static member) function pointer.
If using a lambda, parameters can be captured safely by reference. No copies of the callable are made internally.