# NAG FL Interfacef06snf (zgerc)

## ▸▿ Contents

Settings help

FL Name Style:

FL Specification Language:

## 1Purpose

f06snf computes the rank-1 update of a complex general matrix using a conjugated vector.

## 2Specification

Fortran Interface
 Subroutine f06snf ( m, n, x, incx, y, incy, a, lda)
 Integer, Intent (In) :: m, n, incx, incy, lda Complex (Kind=nag_wp), Intent (In) :: alpha, x(*), y(*) Complex (Kind=nag_wp), Intent (Inout) :: a(lda,*)
#include <nag.h>
 void f06snf_ (const Integer *m, const Integer *n, const Complex *alpha, const Complex x[], const Integer *incx, const Complex y[], const Integer *incy, Complex a[], const Integer *lda)
The routine may be called by the names f06snf, nagf_blas_zgerc or its BLAS name zgerc.

## 3Description

f06snf performs the rank-1 update operation
 $A←αxyH + A ,$
where $A$ is an $m×n$ complex matrix, $x$ is an $m$ element complex vector, $y$ is an $n$-element complex vector, and $\alpha$ is a complex scalar.

None.

## 5Arguments

1: $\mathbf{m}$Integer Input
On entry: $m$, the number of rows of the matrix $A$.
Constraint: ${\mathbf{m}}\ge 0$.
2: $\mathbf{n}$Integer Input
On entry: $n$, the number of columns of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
3: $\mathbf{alpha}$Complex (Kind=nag_wp) Input
On entry: the scalar $\alpha$.
4: $\mathbf{x}\left(*\right)$Complex (Kind=nag_wp) array Input
Note: the dimension of the array x must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{m}}-1\right)×|{\mathbf{incx}}|\right)$.
On entry: the $m$ element vector $x$.
If ${\mathbf{incx}}>0$, ${x}_{\mathit{i}}$ must be stored in ${\mathbf{x}}\left(1+\left(\mathit{i}–1\right)×{\mathbf{incx}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{m}}$.
If ${\mathbf{incx}}<0$, ${x}_{\mathit{i}}$ must be stored in ${\mathbf{x}}\left(1–\left({\mathbf{m}}–\mathit{i}\right)×{\mathbf{incx}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{m}}$.
Intermediate elements of X are not referenced.
5: $\mathbf{incx}$Integer Input
On entry: the increment in the subscripts of x between successive elements of $x$.
Constraint: ${\mathbf{incx}}\ne 0$.
6: $\mathbf{y}\left(*\right)$Complex (Kind=nag_wp) array Input
Note: the dimension of the array y must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)×|{\mathbf{incy}}|\right)$.
On entry: the $n$-element vector $y$.
If ${\mathbf{incy}}>0$, ${y}_{\mathit{i}}$ must be stored in ${\mathbf{y}}\left(1+\left(\mathit{i}-1\right)×{\mathbf{incy}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
If ${\mathbf{incy}}<0$, ${y}_{\mathit{i}}$ must be stored in ${\mathbf{y}}\left(1-\left({\mathbf{n}}-\mathit{i}\right)×{\mathbf{incy}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
Intermediate elements of y are not referenced.
7: $\mathbf{incy}$Integer Input
On entry: the increment in the subscripts of y between successive elements of $y$.
Constraint: ${\mathbf{incy}}\ne 0$.
8: $\mathbf{a}\left({\mathbf{lda}},*\right)$Complex (Kind=nag_wp) array Input/Output
Note: the second dimension of the array a must be at least ${\mathbf{n}}$.
On entry: the $m×n$ matrix $A$.
On exit: the updated matrix $A$.
9: $\mathbf{lda}$Integer Input
On entry: the first dimension of the array a as declared in the (sub)program from which f06snf is called.
Constraint: ${\mathbf{lda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.

None.

Not applicable.

## 8Parallelism and Performance

Background information to multithreading can be found in the Multithreading documentation.
f06snf is not threaded in any implementation.