NAG FL Interface
c06pjf (fft_​complex_​multid)

Settings help

FL Name Style:

FL Specification Language:

1 Purpose

c06pjf computes the multidimensional discrete Fourier transform of a multivariate sequence of complex data values.

2 Specification

Fortran Interface
Subroutine c06pjf ( direct, ndim, nd, n, x, work, lwork, ifail)
Integer, Intent (In) :: ndim, nd(ndim), n, lwork
Integer, Intent (Inout) :: ifail
Complex (Kind=nag_wp), Intent (Inout) :: x(n)
Complex (Kind=nag_wp), Intent (Out) :: work(lwork)
Character (1), Intent (In) :: direct
C Header Interface
#include <nag.h>
void  c06pjf_ (const char *direct, const Integer *ndim, const Integer nd[], const Integer *n, Complex x[], Complex work[], const Integer *lwork, Integer *ifail, const Charlen length_direct)
The routine may be called by the names c06pjf or nagf_sum_fft_complex_multid.

3 Description

c06pjf computes the multidimensional discrete Fourier transform of a multidimensional sequence of complex data values z j1 j2 jm , where j1 = 0 , 1 ,, n1-1 ,   j2 = 0 , 1 ,, n2-1 , and so on. Thus the individual dimensions are n1 , n2 ,, nm , and the total number of data values is n = n1 × n2 ×× nm .
The discrete Fourier transform is here defined (e.g., for m=2 ) by:
z^ k1 , k2 = 1n j1=0 n1-1 j2=0 n2-1 z j1j2 × exp(±2πi( j1k1 n1 + j2k2 n2 )) ,  
where k1 = 0 , 1 ,, n1-1 and k2 = 0 , 1 ,, n2-1 . The plus or minus sign in the argument of the exponential terms in the above definition determine the direction of the transform: a minus sign defines the forward direction and a plus sign defines the backward direction.
The extension to higher dimensions is obvious. (Note the scale factor of 1n in this definition.)
A call of c06pjf with direct='F' followed by a call with direct='B' will restore the original data.
The data values must be supplied in a one-dimensional array using column-major storage ordering of multidimensional data (i.e., with the first subscript j1 varying most rapidly).
This routine calls c06prf to perform one-dimensional discrete Fourier transforms. Hence, the routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as the Stockham self-sorting algorithm, which is described in Temperton (1983).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall
Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5 Arguments

1: direct Character(1) Input
On entry: if the forward transform as defined in Section 3 is to be computed, direct must be set equal to 'F'.
If the backward transform is to be computed, direct must be set equal to 'B'.
Constraint: direct='F' or 'B'.
2: ndim Integer Input
On entry: m, the number of dimensions (or variables) in the multivariate data.
Constraint: ndim1.
3: nd(ndim) Integer array Input
On entry: the elements of nd must contain the dimensions of the ndim variables; that is, nd(i) must contain the dimension of the ith variable.
Constraint: nd(i)1, for i=1,2,,ndim.
4: n Integer Input
On entry: n, the total number of data values.
Constraint: n must equal the product of the first ndim elements of the array nd.
5: x(n) Complex (Kind=nag_wp) array Input/Output
On entry: the complex data values. Data values are stored in x using column-major ordering for storing multidimensional arrays; that is, z j1 j2 jm is stored in x( 1 + j1 + n1 j2 + n1 n2 j3 + ).
On exit: the corresponding elements of the computed transform.
6: work(lwork) Complex (Kind=nag_wp) array Workspace
The workspace requirements as documented for c06pjf may be an overestimate in some implementations.
On exit: the real part of work(1) contains the minimum workspace required for the current value of n with this implementation.
7: lwork Integer Input
On entry: the dimension of the array work as declared in the (sub)program from which c06pjf is called.
Suggested value: lwork n+3 × max(nd(i)) + 15, where i= 1, 2, , ndim.
8: ifail Integer Input/Output
On entry: ifail must be set to 0, −1 or 1 to set behaviour on detection of an error; these values have no effect when no error is detected.
A value of 0 causes the printing of an error message and program execution will be halted; otherwise program execution continues. A value of −1 means that an error message is printed while a value of 1 means that it is not.
If halting is not appropriate, the value −1 or 1 is recommended. If message printing is undesirable, then the value 1 is recommended. Otherwise, the value 0 is recommended. When the value -1 or 1 is used it is essential to test the value of ifail on exit.
On exit: ifail=0 unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry ifail=0 or −1, explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
On entry, ndim=value.
Constraint: ndim1.
On entry, direct=value.
Constraint: direct='F' or 'B'.
On entry, nd(value)=value.
Constraint: nd(i)1, for all i.
On entry, n=value, product of nd elements is value.
Constraint: n must equal the product of the dimensions held in array nd.
On entry, lwork=value.
Constraint: lwork must be at least value.
An internal error has occurred in this routine. Check the routine call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 7 in the Introduction to the NAG Library FL Interface for further information.
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library FL Interface for further information.
Dynamic memory allocation failed.
See Section 9 in the Introduction to the NAG Library FL Interface for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

Background information to multithreading can be found in the Multithreading documentation.
c06pjf is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
c06pjf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to n×log(n) , but also depends on the factorization of the individual dimensions nd(i) . c06pjf is faster if the only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.

10 Example

This example reads in a bivariate sequence of complex data values and prints the two-dimensional Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which may be compared to the original data values.

10.1 Program Text

Program Text (c06pjfe.f90)

10.2 Program Data

Program Data (c06pjfe.d)

10.3 Program Results

Program Results (c06pjfe.r)