NAG CL Interface
f16src (zher2)

Settings help

CL Name Style:


1 Purpose

f16src performs a Hermitian rank-2 update on a complex Hermitian matrix.

2 Specification

#include <nag.h>
void  f16src (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex alpha, const Complex x[], Integer incx, const Complex y[], Integer incy, double beta, Complex a[], Integer pda, NagError *fail)
The function may be called by the names: f16src, nag_blast_zher2 or nag_zher2.

3 Description

f16src performs the Hermitian rank-2 update operation
AαxyH+α¯yxH+βA  
where A is an n×n complex Hermitian matrix, x and y are n-element complex vectors, α is a complex scalar and β is a real scalar.

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee https://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: order Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2: uplo Nag_UploType Input
On entry: specifies whether the upper or lower triangular part of A is stored.
uplo=Nag_Upper
The upper triangular part of A is stored.
uplo=Nag_Lower
The lower triangular part of A is stored.
Constraint: uplo=Nag_Upper or Nag_Lower.
3: n Integer Input
On entry: n, the order of the matrix A.
Constraint: n0.
4: alpha Complex Input
On entry: the scalar α.
5: x[dim] const Complex Input
Note: the dimension, dim, of the array x must be at least max(1,1+(n-1)|incx|).
On entry: the n-element vector x.
If incx>0, xi must be stored in x[(i-1)×incx], for i=1,2,,n.
If incx<0, xi must be stored in x[(n-i)×|incx|], for i=1,2,,n.
Intermediate elements of x are not referenced. If n=0, x is not referenced and may be NULL.
6: incx Integer Input
On entry: the increment in the subscripts of x between successive elements of x.
Constraint: incx0.
7: y[dim] const Complex Input
Note: the dimension, dim, of the array y must be at least max(1,1+(n-1)|incy|).
On entry: the n-element vector y.
If incy>0, yi must be stored in y[(i-1)×incy], for i=1,2,,n.
If incy<0, yi must be stored in y[(n-i)×|incy|], for i=1,2,,n.
Intermediate elements of y are not referenced. If α=0.0 or n=0, y is not referenced and may be NULL.
8: incy Integer Input
On entry: the increment in the subscripts of y between successive elements of y.
Constraint: incy0.
9: beta double Input
On entry: the scalar β.
10: a[dim] Complex Input/Output
Note: the dimension, dim, of the array a must be at least max(1,pda×n).
On entry: the n×n Hermitian matrix A.
If order=Nag_ColMajor, Aij is stored in a[(j-1)×pda+i-1].
If order=Nag_RowMajor, Aij is stored in a[(i-1)×pda+j-1].
If uplo=Nag_Upper, the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.
If uplo=Nag_Lower, the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.
On exit: the updated matrix A. The imaginary parts of the diagonal elements are set to zero.
11: pda Integer Input
On entry: the stride separating row or column elements (depending on the value of order) of the matrix A in the array a.
Constraint: pdamax(1,n).
12: fail NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, incx=value.
Constraint: incx0.
On entry, incy=value.
Constraint: incy0.
On entry, n=value.
Constraint: n0.
NE_INT_2
On entry, pda=value, n=value.
Constraint: pdamax(1,n).
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

Background information to multithreading can be found in the Multithreading documentation.
f16src is not threaded in any implementation.

9 Further Comments

None.

10 Example

Perform rank-2 update of complex Hermitian matrix A using vectors x and y:
A A-xyH -yxH ,  
where A is the 4×4 matrix given by
A = ( 23.0+00.0i 10.0-17.0i 13.0+14.2i -19.0+8.0i 10.0+17.0i 1.0+00.0i 0.3+01.2i -4.7+2.1i 13.0-14.2i 0.3-01.2i 1.0+00.0i -5.9+0.1i -19.0-08.0i -4.7+02.1i -5.9+00.1i 1.0+0.0i ) ,  
and where
x = ( 2.0+1.0i 2.0+3.0i 0.2-1.0i -1.0-2.0i )  
and
y = ( 5.0+1.0i -2.0+1.0i 7.0-1.0i -5.0-2.0i ) .  
The vector y is stored in every second element of array y (incy=2).

10.1 Program Text

Program Text (f16srce.c)

10.2 Program Data

Program Data (f16srce.d)

10.3 Program Results

Program Results (f16srce.r)