NAG CL Interface
d03pyc (dim1_​parab_​coll_​interp)

Settings help

CL Name Style:

1 Purpose

d03pyc may be used in conjunction with either d03pdc or d03pjc. It computes the solution and its first derivative at user-specified points in the spatial coordinate.

2 Specification

#include <nag.h>
void  d03pyc (Integer npde, const double u[], Integer nbkpts, const double xbkpts[], Integer npoly, Integer npts, const double xp[], Integer intpts, Integer itype, double up[], double rsave[], Integer lrsave, NagError *fail)
The function may be called by the names: d03pyc, nag_pde_dim1_parab_coll_interp or nag_pde_interp_1d_coll.

3 Description

d03pyc is an interpolation function for evaluating the solution of a system of partial differential equations (PDEs), or the PDE components of a system of PDEs with coupled ordinary differential equations (ODEs), at a set of user-specified points. The solution of a system of equations can be computed using d03pdc or d03pjc on a set of mesh points; d03pyc can then be employed to compute the solution at a set of points other than those originally used in d03pdc or d03pjc. It can also evaluate the first derivative of the solution. Polynomial interpolation is used between each of the break-points xbkpts[i-1], for i=1,2,,nbkpts. When the derivative is needed (itype=2), the array xp[intpts-1] must not contain any of the break-points, as the method, and consequently the interpolation scheme, assumes that only the solution is continuous at these points.

4 References


5 Arguments

Note: the arguments u, npts, npde, xbkpts, nbkpts, rsave and lrsave must be supplied unchanged from either d03pdc or d03pjc.
1: npde Integer Input
On entry: the number of PDEs.
Constraint: npde1.
2: u[npde×npts] const double Input
Note: the (i,j)th element of the matrix U is stored in u[(j-1)×npde+i-1].
On entry: the PDE part of the original solution returned in the argument u by the function d03pdc or d03pjc.
3: nbkpts Integer Input
On entry: the number of break-points.
Constraint: nbkpts2.
4: xbkpts[nbkpts] const double Input
On entry: xbkpts[i-1], for i=1,2,,nbkpts, must contain the break-points as used by d03pdc or d03pjc.
Constraint: xbkpts[0]<xbkpts[1]<<xbkpts[nbkpts-1].
5: npoly Integer Input
On entry: the degree of the Chebyshev polynomial used for approximation as used by d03pdc or d03pjc.
Constraint: 1npoly49.
6: npts Integer Input
On entry: the number of mesh points as used by d03pdc or d03pjc.
Constraint: npts=(nbkpts-1)×npoly+1.
7: xp[intpts] const double Input
On entry: xp[i-1], for i=1,2,,intpts, must contain the spatial interpolation points.
  • xbkpts[0]xp[0]<xp[1]<<xp[intpts-1]xbkpts[nbkpts-1];
  • if itype=2, xp[i-1]xbkpts[j-1], for i=1,2,,intpts and j=2,3,,nbkpts-1.
8: intpts Integer Input
On entry: the number of interpolation points.
Constraint: intpts1.
9: itype Integer Input
On entry: specifies the interpolation to be performed.
The solution at the interpolation points are computed.
Both the solution and the first derivative at the interpolation points are computed.
Constraint: itype=1 or 2.
10: up[dim] double Output
Note: the dimension, dim, of the array up must be at least npde×intpts×itype.
the element UP(i,j,k) is stored in the array element up[(k-1)×npde×intpts+(j-1)×npde+i-1].
On exit: if itype=1, UP(i,j,1), contains the value of the solution Ui(xj,tout), at the interpolation points xj=xp[j-1], for j=1,2,,intpts and i=1,2,,npde.
If itype=2, UP(i,j,1) contains Ui(xj,tout) and UP(i,j,2) contains Ui x at these points.
11: rsave[lrsave] double Communication Array
The array rsave contains information required by d03pyc as returned by d03pdc or d03pjc. The contents of rsave must not be changed from the call to d03pdc or d03pjc. Some elements of this array are overwritten on exit.
12: lrsave Integer Input
On entry: the size of the workspace rsave, as in d03pdc or d03pjc.
13: fail NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

6 Error Indicators and Warnings

Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
On entry, argument value had an illegal value.
Extrapolation is not allowed.
On entry, itype=2 and at least one interpolation point coincides with a break-point, i.e., interpolation point no value with value value is close to break-point value with value value.
On entry, intpts=value.
Constraint: intpts1.
On entry, itype=value.
Constraint: itype=1 or 2.
On entry, nbkpts=value.
Constraint: nbkpts2.
On entry, npde=value.
Constraint: npde>0.
On entry, npoly=value.
Constraint: npoly>0.
On entry, npts=value, nbkpts=value and npoly=value.
Constraint: npts=(nbkpts-1)×npoly+1.
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.
On entry, i=value, xbkpts[i-1]=value, j=value and xbkpts[j-1]=value.
Constraint: xbkpts[0]<xbkpts[1]<<xbkpts[nbkpts-1].
On entry, i=value, xp[i-1]=value, j=value and xp[j-1]=value.
Constraint: xbkpts[0]xp[0]<xp[1]<<xp[intpts-1]xbkpts[nbkpts-1].

7 Accuracy

See the documents for d03pdc or d03pjc.

8 Parallelism and Performance

Background information to multithreading can be found in the Multithreading documentation.
d03pyc is not threaded in any implementation.

9 Further Comments


10 Example

See d03pdc.