The routine may be called by the names f08nsf, nagf_lapackeig_zgehrd or its LAPACK name zgehrd.
3Description
f08nsf reduces a complex general matrix to upper Hessenberg form by a unitary similarity transformation: . has real subdiagonal elements.
The matrix is not formed explicitly, but is represented as a product of elementary reflectors (see the F08 Chapter Introduction for details). Routines are provided to work with in this representation (see Section 9).
The routine can take advantage of a previous call to f08nvf, which may produce a matrix with the structure:
where and are upper triangular. If so, only the central diagonal block , in rows and columns to , needs to be reduced to Hessenberg form (the blocks and will also be affected by the reduction). Therefore, the values of and determined by f08nvf can be supplied to the routine directly. If f08nvf has not previously been called however, then must be set to and to .
4References
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
5Arguments
1: – IntegerInput
On entry: , the order of the matrix .
Constraint:
.
2: – IntegerInput
3: – IntegerInput
On entry: if has been output by f08nvf, ilo and ihimust contain the values returned by that routine. Otherwise, ilo must be set to and ihi to n.
Constraints:
if , ;
if , and .
4: – Complex (Kind=nag_wp) arrayInput/Output
Note: the second dimension of the array a
must be at least
.
On entry: the general matrix .
On exit: a is overwritten by the upper Hessenberg matrix and details of the unitary matrix . The subdiagonal elements of are real.
5: – IntegerInput
On entry: the first dimension of the array a as declared in the (sub)program from which f08nsf is called.
Constraint:
.
6: – Complex (Kind=nag_wp) arrayOutput
Note: the dimension of the array tau
must be at least
.
On exit: further details of the unitary matrix .
7: – Complex (Kind=nag_wp) arrayWorkspace
On exit: if , the real part of contains the minimum value of lwork required for optimal performance.
8: – IntegerInput
On entry: the dimension of the array work as declared in the (sub)program from which f08nsf is called.
If , a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued.
Suggested value:
for optimal performance, , where is the optimal block size.
Constraint:
or .
9: – IntegerOutput
On exit: unless the routine detects an error (see Section 6).
6Error Indicators and Warnings
If , argument had an illegal value. An explanatory message is output, and execution of the program is terminated.
Dynamic memory allocation failed.
See Section 9 in the Introduction to the NAG Library FL Interface for further information.
An explanatory message is output, and execution of the program is terminated.
7Accuracy
The computed Hessenberg matrix is exactly similar to a nearby matrix , where
is a modestly increasing function of , and is the machine precision.
The elements of themselves may be sensitive to small perturbations in or to rounding errors in the computation, but this does not affect the stability of the eigenvalues, eigenvectors or Schur factorization.
8Parallelism and Performance
Background information to multithreading can be found in the Multithreading documentation.
f08nsf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.
9Further Comments
The total number of real floating-point operations is approximately , where ; if and , the number is approximately .
To form the unitary matrix f08nsf may be followed by a call to f08ntf
:
Call zunghr(n,ilo,ihi,a,lda,tau,work,lwork,info)
To apply to an complex matrix f08nsf may be followed by a call to f08nuf.
For example,