# NAG FL Interfacef06ujf (zlantr)

## ▸▿ Contents

Settings help

FL Name Style:

FL Specification Language:

## 1Purpose

f06ujf returns, via the function name, the value of the $1$-norm, the $\infty$-norm, the Frobenius norm, or the maximum absolute value of the elements of a complex $m×n$ trapezoidal matrix (triangular if $m=n$).

## 2Specification

Fortran Interface
 Function f06ujf ( norm, uplo, diag, m, n, a, lda, work)
 Real (Kind=nag_wp) :: f06ujf Integer, Intent (In) :: m, n, lda Real (Kind=nag_wp), Intent (Inout) :: work(*) Complex (Kind=nag_wp), Intent (In) :: a(lda,*) Character (1), Intent (In) :: norm, uplo, diag
#include <nag.h>
 double f06ujf_ (const char *norm, const char *uplo, const char *diag, const Integer *m, const Integer *n, const Complex a[], const Integer *lda, double work[], const Charlen length_norm, const Charlen length_uplo, const Charlen length_diag)
The routine may be called by the names f06ujf or nagf_blas_zlantr.

None.

None.

## 5Arguments

1: $\mathbf{norm}$Character(1) Input
On entry: specifies the value to be returned.
${\mathbf{norm}}=\text{'1'}$ or $\text{'O'}$
The $1$-norm.
${\mathbf{norm}}=\text{'I'}$
The $\infty$-norm.
${\mathbf{norm}}=\text{'F'}$ or $\text{'E'}$
The Frobenius (or Euclidean) norm.
${\mathbf{norm}}=\text{'M'}$
The value $\underset{i,j}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}|{a}_{ij}|$ (not a norm).
Constraint: ${\mathbf{norm}}=\text{'1'}$, $\text{'O'}$, $\text{'I'}$, $\text{'F'}$, $\text{'E'}$ or $\text{'M'}$.
2: $\mathbf{uplo}$Character(1) Input
On entry: specifies whether $A$ is upper or lower trapezoidal.
${\mathbf{uplo}}=\text{'U'}$
$A$ is upper trapezoidal.
${\mathbf{uplo}}=\text{'L'}$
$A$ is lower trapezoidal.
Constraint: ${\mathbf{uplo}}=\text{'U'}$ or $\text{'L'}$.
3: $\mathbf{diag}$Character(1) Input
On entry: specifies whether $A$ has nonunit or unit diagonal elements.
${\mathbf{diag}}=\text{'N'}$
The diagonal elements are stored explicitly.
${\mathbf{diag}}=\text{'U'}$
The diagonal elements are assumed to be $1$, and are not referenced.
Constraint: ${\mathbf{diag}}=\text{'N'}$ or $\text{'U'}$.
4: $\mathbf{m}$Integer Input
On entry: $m$, the number of rows of the matrix $A$.
When ${\mathbf{m}}=0$, f06ujf is set to zero.
Constraint: ${\mathbf{m}}\ge 0$.
5: $\mathbf{n}$Integer Input
On entry: $n$, the number of columns of the matrix $A$.
When ${\mathbf{n}}=0$, f06ujf is set to zero.
Constraint: ${\mathbf{n}}\ge 0$.
6: $\mathbf{a}\left({\mathbf{lda}},*\right)$Complex (Kind=nag_wp) array Input
Note: the second dimension of the array a must be at least ${\mathbf{n}}$.
On entry: the $m×n$ trapezoidal matrix $A$.
• If ${\mathbf{uplo}}=\text{'U'}$, $A$ is upper trapezoidal and the elements of the array below the diagonal are not referenced.
• If ${\mathbf{uplo}}=\text{'L'}$, $A$ is lower trapezoidal and the elements of the array above the diagonal are not referenced.
• If ${\mathbf{diag}}=\text{'U'}$, the diagonal elements of $A$ are assumed to be $1$, and are not referenced.
7: $\mathbf{lda}$Integer Input
On entry: the first dimension of the array a as declared in the (sub)program from which f06ujf is called.
Constraint: ${\mathbf{lda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
8: $\mathbf{work}\left(*\right)$Real (Kind=nag_wp) array Workspace
Note: the dimension of the array work must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}},{\mathbf{n}}\right)$ if ${\mathbf{norm}}=\text{'I'}$, and at least $1$ otherwise.

None.

Not applicable.