NAG FL Interfacef06pef (dspmv)

▸▿ Contents

Settings help

FL Name Style:

FL Specification Language:

1Purpose

f06pef computes the matrix-vector product for a real symmetric matrix stored in packed form.

2Specification

Fortran Interface
 Subroutine f06pef ( uplo, n, ap, x, incx, beta, y, incy)
 Integer, Intent (In) :: n, incx, incy Real (Kind=nag_wp), Intent (In) :: alpha, ap(*), x(*), beta Real (Kind=nag_wp), Intent (Inout) :: y(*) Character (1), Intent (In) :: uplo
#include <nag.h>
 void f06pef_ (const char *uplo, const Integer *n, const double *alpha, const double ap[], const double x[], const Integer *incx, const double *beta, double y[], const Integer *incy, const Charlen length_uplo)
The routine may be called by the names f06pef, nagf_blas_dspmv or its BLAS name dspmv.

3Description

f06pef performs the matrix-vector operation
 $y←αAx + βy ,$
where $A$ is an $n×n$ real symmetric matrix stored in packed form, $x$ and $y$ are $n$-element real vectors, and $\alpha$ and $\beta$ are real scalars.

None.

5Arguments

1: $\mathbf{uplo}$Character(1) Input
On entry: specifies whether the upper or lower triangular part of $A$ is stored.
${\mathbf{uplo}}=\text{'U'}$
The upper triangular part of $A$ is stored.
${\mathbf{uplo}}=\text{'L'}$
The lower triangular part of $A$ is stored.
Constraint: ${\mathbf{uplo}}=\text{'U'}$ or $\text{'L'}$.
2: $\mathbf{n}$Integer Input
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
3: $\mathbf{alpha}$Real (Kind=nag_wp) Input
On entry: the scalar $\alpha$.
4: $\mathbf{ap}\left(*\right)$Real (Kind=nag_wp) array Input
Note: the dimension of the array ap must be at least ${\mathbf{n}}×\left({\mathbf{n}}+1\right)/2$.
On entry: the $n×n$ symmetric matrix $A$, packed by columns.
More precisely,
• if ${\mathbf{uplo}}=\text{'U'}$, the upper triangle of $A$ must be stored with element ${A}_{ij}$ in ${\mathbf{ap}}\left(i+j\left(j-1\right)/2\right)$ for $i\le j$;
• if ${\mathbf{uplo}}=\text{'L'}$, the lower triangle of $A$ must be stored with element ${A}_{ij}$ in ${\mathbf{ap}}\left(i+\left(2n-j\right)\left(j-1\right)/2\right)$ for $i\ge j$.
5: $\mathbf{x}\left(*\right)$Real (Kind=nag_wp) array Input
Note: the dimension of the array x must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)×|{\mathbf{incx}}|\right)$.
On entry: the $n$-element vector $x$.
If ${\mathbf{incx}}>0$, ${x}_{\mathit{i}}$ must be stored in ${\mathbf{x}}\left(1+\left(\mathit{i}-1\right)×{\mathbf{incx}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
If ${\mathbf{incx}}<0$, ${x}_{\mathit{i}}$ must be stored in ${\mathbf{x}}\left(1-\left({\mathbf{n}}-\mathit{i}\right)×{\mathbf{incx}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
Intermediate elements of x are not referenced.
6: $\mathbf{incx}$Integer Input
On entry: the increment in the subscripts of x between successive elements of $x$.
Constraint: ${\mathbf{incx}}\ne 0$.
7: $\mathbf{beta}$Real (Kind=nag_wp) Input
On entry: the scalar $\beta$.
8: $\mathbf{y}\left(*\right)$Real (Kind=nag_wp) array Input/Output
Note: the dimension of the array y must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)×|{\mathbf{incy}}|\right)$.
On entry: the $n$-element vector $y$, if ${\mathbf{beta}}=0.0$ y need not be set.
If ${\mathbf{incy}}>0$, ${y}_{\mathit{i}}$ must be stored in ${\mathbf{y}}\left(1+\left(\mathit{i}–1\right)×{\mathbf{incy}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
If ${\mathbf{incy}}<0$, ${y}_{\mathit{i}}$ must be stored in ${\mathbf{y}}\left(1–\left({\mathbf{n}}–\mathit{i}\right)×{\mathbf{incy}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
On exit: the updated vector $y$ stored in the array elements used to supply the original vector $y$.
9: $\mathbf{incy}$Integer Input
On entry: the increment in the subscripts of y between successive elements of $y$.
Constraint: ${\mathbf{incy}}\ne 0$.

None.

Not applicable.