Routine |
Mark of Introduction |
Purpose |
---|---|---|
f01abf | 1 | nagf_matop_real_symm_posdef_inv Inverse of real symmetric positive definite matrix using iterative refinement |
f01adf | 2 | nagf_matop_real_symm_posdef_inv_noref Inverse of real symmetric positive definite matrix |
f01blf | 5 | nagf_matop_real_gen_pseudinv Pseudo-inverse and rank of real matrix |
f01brf | 7 | nagf_matop_real_gen_sparse_lu factorization of real sparse matrix |
f01bsf | 7 | nagf_matop_real_gen_sparse_lu_reuse factorization of real sparse matrix with known sparsity pattern |
f01buf | 7 | nagf_matop_real_symm_posdef_fac factorization of real symmetric positive definite band matrix |
f01bvf | 7 | nagf_matop_real_symm_posdef_geneig Reduction to standard form, generalized real symmetric-definite banded eigenproblem |
f01ckf | 2 | nagf_matop_real_gen_matmul Multiplication of real matrices |
f01crf | 7 | nagf_matop_real_gen_trans_inplace Transposition of a real matrix |
f01ctf | 14 | nagf_matop_real_addsub Sum or difference of two real matrices, optional scaling and transposition |
f01cwf | 14 | nagf_matop_complex_addsub Sum or difference of two complex matrices, optional scaling and transposition |
f01dff | 27.1 | nagf_matop_real_tri_matmul Matrix-matrix product, two real triangular matrices, update third matrix |
f01dgf | 27 | nagf_matop_real_tri_matmul_inplace Matrix-matrix product, two real lower or upper triangular matrices |
f01dtf | 27.1 | nagf_matop_complex_tri_matmul Matrix-matrix product, two complex triangular matrices, update third matrix |
f01duf | 27 | nagf_matop_complex_tri_matmul_inplace Matrix-matrix product, two complex lower or upper triangular matrices |
f01ecf | 22 | nagf_matop_real_gen_matrix_exp Real matrix exponential |
f01edf | 23 | nagf_matop_real_symm_matrix_exp Real symmetric matrix exponential |
f01eff | 23 | nagf_matop_real_symm_matrix_fun Function of a real symmetric matrix |
f01ejf | 24 | nagf_matop_real_gen_matrix_log Real matrix logarithm |
f01ekf | 24 | nagf_matop_real_gen_matrix_fun_std Exponential, sine, cosine, sinh or cosh of a real matrix (Schur–Parlett algorithm) |
f01elf | 24 | nagf_matop_real_gen_matrix_fun_num Function of a real matrix (using numerical differentiation) |
f01emf | 24 | nagf_matop_real_gen_matrix_fun_usd Function of a real matrix (using user-supplied derivatives) |
f01enf | 25 | nagf_matop_real_gen_matrix_sqrt Real matrix square root |
f01epf | 25 | nagf_matop_real_tri_matrix_sqrt Real upper quasi-triangular matrix square root |
f01eqf | 25 | nagf_matop_real_gen_matrix_pow General power of a real matrix |
f01fcf | 23 | nagf_matop_complex_gen_matrix_exp Complex matrix exponential |
f01fdf | 23 | nagf_matop_complex_herm_matrix_exp Complex Hermitian matrix exponential |
f01fff | 23 | nagf_matop_complex_herm_matrix_fun Function of a complex Hermitian matrix |
f01fjf | 24 | nagf_matop_complex_gen_matrix_log Complex matrix logarithm |
f01fkf | 24 | nagf_matop_complex_gen_matrix_fun_std Exponential, sine, cosine, sinh or cosh of a complex matrix (Schur–Parlett algorithm) |
f01flf | 24 | nagf_matop_complex_gen_matrix_fun_num Function of a complex matrix (using numerical differentiation) |
f01fmf | 24 | nagf_matop_complex_gen_matrix_fun_usd Function of a complex matrix (using user-supplied derivatives) |
f01fnf | 25 | nagf_matop_complex_gen_matrix_sqrt Complex matrix square root |
f01fpf | 25 | nagf_matop_complex_tri_matrix_sqrt Complex upper triangular matrix square root |
f01fqf | 25 | nagf_matop_complex_gen_matrix_pow General power of a complex matrix |
f01gaf | 24 | nagf_matop_real_gen_matrix_actexp Action of a real matrix exponential on a real matrix |
f01gbf | 24 | nagf_matop_real_gen_matrix_actexp_rcomm Action of a real matrix exponential on a real matrix (reverse communication) |
f01haf | 24 | nagf_matop_complex_gen_matrix_actexp Action of a complex matrix exponential on a complex matrix |
f01hbf | 24 | nagf_matop_complex_gen_matrix_actexp_rcomm Action of a complex matrix exponential on a complex matrix (reverse communication) |
f01jaf | 24 | nagf_matop_real_gen_matrix_cond_std Condition number for the exponential, logarithm, sine, cosine, sinh or cosh of a real matrix |
f01jbf | 24 | nagf_matop_real_gen_matrix_cond_num Condition number for a function of a real matrix (using numerical differentiation) |
f01jcf | 24 | nagf_matop_real_gen_matrix_cond_usd Condition number for a function of a real matrix (using user-supplied derivatives) |
f01jdf | 25 | nagf_matop_real_gen_matrix_cond_sqrt Condition number for square root of real matrix |
f01jef | 25 | nagf_matop_real_gen_matrix_cond_pow Condition number for real matrix power |
f01jff | 25 | nagf_matop_real_gen_matrix_frcht_pow Fréchet derivative of real matrix power |
f01jgf | 25 | nagf_matop_real_gen_matrix_cond_exp Condition number for real matrix exponential |
f01jhf | 25 | nagf_matop_real_gen_matrix_frcht_exp Fréchet derivative of real matrix exponential |
f01jjf | 25 | nagf_matop_real_gen_matrix_cond_log Condition number for real matrix logarithm |
f01jkf | 25 | nagf_matop_real_gen_matrix_frcht_log Fréchet derivative of real matrix logarithm |
f01kaf | 24 | nagf_matop_complex_gen_matrix_cond_std Condition number for the exponential, logarithm, sine, cosine, sinh or cosh of a complex matrix |
f01kbf | 24 | nagf_matop_complex_gen_matrix_cond_num Condition number for a function of a complex matrix (using numerical differentiation) |
f01kcf | 24 | nagf_matop_complex_gen_matrix_cond_usd Condition number for a function of a complex matrix (using user-supplied derivatives) |
f01kdf | 25 | nagf_matop_complex_gen_matrix_cond_sqrt Condition number for square root of complex matrix |
f01kef | 25 | nagf_matop_complex_gen_matrix_cond_pow Condition number for complex matrix power |
f01kff | 25 | nagf_matop_complex_gen_matrix_frcht_pow Fréchet derivative of complex matrix power |
f01kgf | 25 | nagf_matop_complex_gen_matrix_cond_exp Condition number for complex matrix exponential |
f01khf | 25 | nagf_matop_complex_gen_matrix_frcht_exp Fréchet derivative of complex matrix exponential |
f01kjf | 25 | nagf_matop_complex_gen_matrix_cond_log Condition number for complex matrix logarithm |
f01kkf | 25 | nagf_matop_complex_gen_matrix_frcht_log Fréchet derivative of complex matrix logarithm |
f01lef | 11 | nagf_matop_real_gen_tridiag_lu factorization of real tridiagonal matrix |
f01lhf | 13 | nagf_matop_real_gen_blkdiag_lu factorization of real almost block diagonal matrix |
f01mcf | 8 | nagf_matop_real_vband_posdef_fac factorization of real symmetric positive definite variable-bandwidth matrix |
f01mdf | 27.1 | nagf_matop_real_modified_cholesky Computes the modified Cholesky factorization of a real symmetric matrix |
f01mef | 27.1 | nagf_matop_real_mod_chol_perturbed_a Computes the positive definite perturbed matrix from the factors of a modified Cholesky factorization of a real symmetric matrix |
f01qgf | 14 | nagf_matop_real_trapez_rq factorization of real upper trapezoidal matrix |
f01qjf | 14 | nagf_matop_real_gen_rq factorization of real matrix |
f01qkf | 14 | nagf_matop_real_gen_rq_formq Operations with orthogonal matrices, form rows of , after factorization by f01qjf |
f01rgf | 14 | nagf_matop_complex_trapez_rq factorization of complex upper trapezoidal matrix |
f01rjf | 14 | nagf_matop_complex_gen_rq factorization of complex matrix |
f01rkf | 14 | nagf_matop_complex_gen_rq_formq Operations with unitary matrices, form rows of , after factorization by f01rjf |
f01saf | 27 | nagf_matop_real_nmf Non-negative matrix factorization of real non-negative matrix |
f01sbf | 27 | nagf_matop_real_nmf_rcomm Non-negative matrix factorization of real non-negative matrix (reverse communication) |
f01vaf | 23 | dtrttp nagf_matop_dtrttp Copies a real triangular matrix from full format to packed format |
f01vbf | 23 | ztrttp nagf_matop_ztrttp Copies a complex triangular matrix from full format to packed format |
f01vcf | 23 | dtpttr nagf_matop_dtpttr Copies a real triangular matrix from packed format to full format |
f01vdf | 23 | ztpttr nagf_matop_ztpttr Copies a complex triangular matrix from packed format to full format |
f01vef | 23 | dtrttf nagf_matop_dtrttf Copies a real triangular matrix from full format to Rectangular Full Packed format |
f01vff | 23 | ztrttf nagf_matop_ztrttf Copies a complex triangular matrix from full format to Rectangular Full Packed format |
f01vgf | 23 | dtfttr nagf_matop_dtfttr Copies a real triangular matrix from Rectangular Full Packed format to full format |
f01vhf | 23 | ztfttr nagf_matop_ztfttr Copies a complex triangular matrix from Rectangular Full Packed format to full format |
f01vjf | 23 | dtpttf nagf_matop_dtpttf Copies a real triangular matrix from packed format to Rectangular Full Packed format |
f01vkf | 23 | ztpttf nagf_matop_ztpttf Copies a complex triangular matrix from packed format to Rectangular Full Packed format |
f01vlf | 23 | dtfttp nagf_matop_dtfttp Copies a real triangular matrix from Rectangular Full Packed format to packed format |
f01vmf | 23 | ztfttp nagf_matop_ztfttp Copies a complex triangular matrix from Rectangular Full Packed format to packed format |
f01zaf | 14 | nagf_matop_real_tri_pack Convert real matrix between packed triangular and square storage formats |
f01zbf | 14 | nagf_matop_complex_tri_pack Convert complex matrix between packed triangular and square storage formats |
f01zcf | 14 | nagf_matop_real_band_pack Convert real matrix between packed banded and rectangular storage formats |
f01zdf | 14 | nagf_matop_complex_band_pack Convert complex matrix between packed banded and rectangular storage formats |