f11dqc solves a complex sparse non-Hermitian system of linear equations, represented in coordinate storage format, using a restarted generalized minimal residual (RGMRES), conjugate gradient squared (CGS), stabilized bi-conjugate gradient (Bi-CGSTAB), or transpose-free quasi-minimal residual (TFQMR) method, with incomplete preconditioning.
f11dqc uses the incomplete factorization determined by f11dnc as the preconditioning matrix. A call to f11dqc must always be preceded by a call to f11dnc. Alternative preconditioners for the same storage scheme are available by calling f11dsc.
The matrix , and the preconditioning matrix , are represented in coordinate storage (CS) format (see Section 2.1.1 in the F11 Chapter Introduction) in the arrays a, irow and icol, as returned from f11dnc. The array a holds the nonzero entries in these matrices, while irow and icol hold the corresponding row and column indices.
4References
Freund R W (1993) A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems SIAM J. Sci. Comput.14 470–482
Freund R W and Nachtigal N (1991) QMR: a Quasi-Minimal Residual Method for Non-Hermitian Linear Systems Numer. Math.60 315–339
Saad Y and Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems SIAM J. Sci. Statist. Comput.7 856–869
Sleijpen G L G and Fokkema D R (1993) BiCGSTAB for linear equations involving matrices with complex spectrum ETNA1 11–32
Sonneveld P (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems SIAM J. Sci. Statist. Comput.10 36–52
Van der Vorst H (1989) Bi-CGSTAB, a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems SIAM J. Sci. Statist. Comput.13 631–644
5Arguments
1: – Nag_SparseNsym_MethodInput
On entry: specifies the iterative method to be used.
Restarted generalized minimum residual method.
Conjugate gradient squared method.
Bi-conjugate gradient stabilized () method.
Transpose-free quasi-minimal residual method.
Constraint:
, , or .
2: – IntegerInput
On entry: , the order of the matrix . This must be the same value as was supplied in the preceding call to f11dnc.
Constraint:
.
3: – IntegerInput
On entry: the number of nonzero elements in the matrix . This must be the same value as was supplied in the preceding call to f11dnc.
Constraint:
.
4: – const ComplexInput
On entry: the values returned in the array a by a previous call to f11dnc.
5: – IntegerInput
On entry: the dimension of the arrays a, irow and icol. This must be the same value as was supplied in the preceding call to f11dnc.
On entry: the required tolerance. Let denote the approximate solution at iteration , and the corresponding residual. The algorithm is considered to have converged at iteration if
If , is used, where is the machine precision. Otherwise is used.
Constraint:
.
15: – IntegerInput
On entry: the maximum number of iterations allowed.
Constraint:
.
16: – ComplexInput/Output
On entry: an initial approximation to the solution vector .
On exit: an improved approximation to the solution vector .
17: – double *Output
On exit: the final value of the residual norm , where is the output value of itn.
18: – Integer *Output
On exit: the number of iterations carried out.
19: – NagError *Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).
The required accuracy could not be obtained. However, a reasonable accuracy may have been achieved.
NE_ALG_FAIL
Algorithmic breakdown. A solution is returned, although it is possible that it is completely inaccurate.
NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_BAD_PARAM
On entry, argument had an illegal value.
NE_CONVERGENCE
The solution has not converged after iterations.
NE_INT
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
NE_INT_2
On entry, and .
Constraint: .
On entry, and .
Constraint: and .
On entry, and .
Constraint: .
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_INVALID_CS
On entry, , , and . Constraint: and .
On entry, , , . Constraint: and .
NE_INVALID_CS_PRECOND
The CS representation of the preconditioner is invalid.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.
NE_NOT_STRICTLY_INCREASING
On entry, is out of order: .
On entry, the location () is a duplicate: .
NE_REAL
On entry, .
Constraint: .
7Accuracy
On successful termination, the final residual , where , satisfies the termination criterion
The value of the final residual norm is returned in rnorm.
8Parallelism and Performance
Background information to multithreading can be found in the Multithreading documentation.
f11dqc is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f11dqc makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.
9Further Comments
The time taken by f11dqc for each iteration is roughly proportional to the value of nnzc returned from the preceding call to f11dnc.
The number of iterations required to achieve a prescribed accuracy cannot be easily determined a priori, as it can depend dramatically on the conditioning and spectrum of the preconditioned coefficient matrix .
10Example
This example solves a complex sparse non-Hermitian linear system of equations using the CGS method, with incomplete preconditioning.