# NAG FL Interfacef16rbf (dgb_​norm)

## ▸▿ Contents

Settings help

FL Name Style:

FL Specification Language:

## 1Purpose

f16rbf calculates the value of the $1$-norm, the $\infty$-norm, the Frobenius norm or the maximum absolute value of the elements of a real $m×n$ band matrix stored in banded form.
It can also be used to compute the value of the $2$-norm of a row $n$-vector or a column $m$-vector.

## 2Specification

Fortran Interface
 Function f16rbf ( m, n, kl, ku, ab, ldab)
 Real (Kind=nag_wp) :: f16rbf Integer, Intent (In) :: inorm, m, n, kl, ku, ldab Real (Kind=nag_wp), Intent (In) :: ab(ldab,*)
#include <nag.h>
 double f16rbf_ (const Integer *inorm, const Integer *m, const Integer *n, const Integer *kl, const Integer *ku, const double ab[], const Integer *ldab)
The routine may be called by the names f16rbf or nagf_blast_dgb_norm.

## 3Description

Given a real $m×n$ banded matrix, $A$, f16rbf calculates one of the values given by
 ${‖A‖}_{1}=\underset{j}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}\sum _{i=1}^{m}|{a}_{ij}|$ (the $1$-norm of $A$), ${‖A‖}_{\infty }=\underset{i}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}\sum _{j=1}^{n}|{a}_{ij}|$ (the $\infty$-norm of $A$), ${‖A‖}_{F}={\left(\sum _{i=1}^{m}\sum _{j=1}^{n}{|{a}_{ij}|}^{2}\right)}^{1/2}$ (the Frobenius norm of $A$),   or $\underset{i,j}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}|{a}_{ij}|$ (the maximum absolute element value of $A$).
If $m$ or $n$ is $1$ then additionally f16rbf can calculate the value ${‖A‖}_{2}=\sqrt{\sum {a}_{i}^{2}}$ (the $2$-norm of $A$).

## 4References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee https://www.netlib.org/blas/blast-forum/blas-report.pdf

## 5Arguments

1: $\mathbf{inorm}$Integer Input
On entry: specifies the value to be returned. The integer codes shown below can be replaced by the equivalent named constants of the form NAG_?_NORM. These named constants are available via the nag_library module and are also used in the example program for clarity.
${\mathbf{inorm}}=171$ (NAG_ONE_NORM)
The $1$-norm.
${\mathbf{inorm}}=173$ (NAG_TWO_NORM)
The $2$-norm of a row or column vector.
${\mathbf{inorm}}=174$ (NAG_FROBENIUS_NORM)
The Frobenius (or Euclidean) norm.
${\mathbf{inorm}}=175$ (NAG_INF_NORM)
The $\infty$-norm.
${\mathbf{inorm}}=177$ (NAG_MAX_NORM)
The value $\underset{i,j}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}|{a}_{ij}|$ (not a norm).
Constraints:
• ${\mathbf{inorm}}=171$, $173$, $174$, $175$ or $177$;
• if ${\mathbf{inorm}}=173$, ${\mathbf{m}}=1$ or ${\mathbf{n}}=1$.
2: $\mathbf{m}$Integer Input
On entry: $m$, the number of rows of the matrix $A$. If ${\mathbf{m}}\le 0$ on input, f16rbf returns $0$.
3: $\mathbf{n}$Integer Input
On entry: $n$, the number of columns of the matrix $A$. If ${\mathbf{n}}\le 0$ on input, f16rbf returns $0$.
4: $\mathbf{kl}$Integer Input
On entry: ${k}_{l}$, the number of subdiagonals within the band of $A$. If ${\mathbf{kl}}<0$ on input, f16rbf returns $0$.
5: $\mathbf{ku}$Integer Input
On entry: ${k}_{u}$, the number of superdiagonals within the band of $A$. If ${\mathbf{ku}}<0$ on input, f16rbf returns $0$.
6: $\mathbf{ab}\left({\mathbf{ldab}},*\right)$Real (Kind=nag_wp) array Input
Note: the second dimension of the array ab must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry: the $m×n$ band matrix $A$.
The matrix is stored in rows $1$ to ${k}_{l}+{k}_{u}+1$, more precisely, the element ${A}_{ij}$ must be stored in
 $ab(ku+1+i-j,j) for ​max(1,j-ku)≤i≤min(m,j+kl).$
7: $\mathbf{ldab}$Integer Input
On entry: the first dimension of the array ab as declared in the (sub)program from which f16rbf is called.
Constraint: ${\mathbf{ldab}}\ge {\mathbf{kl}}+{\mathbf{ku}}+1$.

## 6Error Indicators and Warnings

If any constraint on an input parameter is violated, an error message is printed and program execution is terminated.

## 7Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

## 8Parallelism and Performance

f16rbf is not threaded in any implementation.

None.

## 10Example

Calculates the various norms of a $6×4$ banded matrix with two subdiagonals and one superdiagonal.

### 10.1Program Text

Program Text (f16rbfe.f90)

### 10.2Program Data

Program Data (f16rbfe.d)

### 10.3Program Results

Program Results (f16rbfe.r)