# NAG CL Interfacef16zfc (ztrmm)

Settings help

CL Name Style:

## 1Purpose

f16zfc performs matrix-matrix multiplication for a complex triangular matrix.

## 2Specification

 #include
 void f16zfc (Nag_OrderType order, Nag_SideType side, Nag_UploType uplo, Nag_TransType trans, Nag_DiagType diag, Integer m, Integer n, Complex alpha, const Complex a[], Integer pda, Complex b[], Integer pdb, NagError *fail)
The function may be called by the names: f16zfc, nag_blast_ztrmm or nag_ztrmm.

## 3Description

f16zfc performs one of the matrix-matrix operations
 $B←αAB, B←αATB, B←αAHB, B←αBA, B←αBAT or B←αBAH,$
where $B$ is an $m×n$ complex matrix, $A$ is a complex triangular matrix, and $\alpha$ is a complex scalar.

## 4References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee https://www.netlib.org/blas/blast-forum/blas-report.pdf

## 5Arguments

1: $\mathbf{order}$Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2: $\mathbf{side}$Nag_SideType Input
On entry: specifies whether $B$ is operated on from the left or the right.
${\mathbf{side}}=\mathrm{Nag_LeftSide}$
$B$ is pre-multiplied from the left.
${\mathbf{side}}=\mathrm{Nag_RightSide}$
$B$ is post-multiplied from the right.
Constraint: ${\mathbf{side}}=\mathrm{Nag_LeftSide}$ or $\mathrm{Nag_RightSide}$.
3: $\mathbf{uplo}$Nag_UploType Input
On entry: specifies whether $A$ is upper or lower triangular.
${\mathbf{uplo}}=\mathrm{Nag_Upper}$
$A$ is upper triangular.
${\mathbf{uplo}}=\mathrm{Nag_Lower}$
$A$ is lower triangular.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
4: $\mathbf{trans}$Nag_TransType Input
On entry: specifies whether the operation involves $A$, ${A}^{\mathrm{T}}$ or ${A}^{\mathrm{H}}$.
${\mathbf{trans}}=\mathrm{Nag_NoTrans}$
It involves $A$.
${\mathbf{trans}}=\mathrm{Nag_Trans}$
It involves ${A}^{\mathrm{T}}$.
${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$
It involves ${A}^{\mathrm{H}}$.
Constraint: ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, $\mathrm{Nag_Trans}$ or $\mathrm{Nag_ConjTrans}$.
5: $\mathbf{diag}$Nag_DiagType Input
On entry: specifies whether $A$ has nonunit or unit diagonal elements.
${\mathbf{diag}}=\mathrm{Nag_NonUnitDiag}$
The diagonal elements are stored explicitly.
${\mathbf{diag}}=\mathrm{Nag_UnitDiag}$
The diagonal elements are assumed to be $1$ and are not referenced.
Constraint: ${\mathbf{diag}}=\mathrm{Nag_NonUnitDiag}$ or $\mathrm{Nag_UnitDiag}$.
6: $\mathbf{m}$Integer Input
On entry: $m$, the number of rows of the matrix $B$; the order of $A$ if ${\mathbf{side}}=\mathrm{Nag_LeftSide}$.
Constraint: ${\mathbf{m}}\ge 0$.
7: $\mathbf{n}$Integer Input
On entry: $n$, the number of columns of the matrix $B$; the order of $A$ if ${\mathbf{side}}=\mathrm{Nag_RightSide}$.
Constraint: ${\mathbf{n}}\ge 0$.
8: $\mathbf{alpha}$Complex Input
On entry: the scalar $\alpha$.
9: $\mathbf{a}\left[\mathit{dim}\right]$const Complex Input
Note: the dimension, dim, of the array a must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{m}}\right)$ when ${\mathbf{side}}=\mathrm{Nag_LeftSide}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$ when ${\mathbf{side}}=\mathrm{Nag_RightSide}$.
On entry: the triangular matrix $A$; $A$ is $m×m$ if ${\mathbf{side}}=\mathrm{Nag_LeftSide}$, or $n×n$ if ${\mathbf{side}}=\mathrm{Nag_RightSide}$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, $A$ is upper triangular and the elements of the array corresponding to the lower triangular part of $A$ are not referenced.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, $A$ is lower triangular and the elements of the array corresponding to the upper triangular part of $A$ are not referenced.
If ${\mathbf{diag}}=\mathrm{Nag_UnitDiag}$, the diagonal elements of $A$ are assumed to be $1$, and are not referenced.
10: $\mathbf{pda}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $A$ in the array a.
Constraints:
• if ${\mathbf{side}}=\mathrm{Nag_LeftSide}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• if ${\mathbf{side}}=\mathrm{Nag_RightSide}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
11: $\mathbf{b}\left[\mathit{dim}\right]$Complex Input/Output
Note: the dimension, dim, of the array b must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdb}}×{\mathbf{n}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}×{\mathbf{pdb}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${B}_{ij}$ is stored in ${\mathbf{b}}\left[\left(j-1\right)×{\mathbf{pdb}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${B}_{ij}$ is stored in ${\mathbf{b}}\left[\left(i-1\right)×{\mathbf{pdb}}+j-1\right]$.
On entry: the $m×n$ matrix $B$.
If ${\mathbf{alpha}}=0$, b need not be set.
On exit: the updated matrix $B$.
12: $\mathbf{pdb}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
13: $\mathbf{fail}$NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_ENUM_INT_2
On entry, ${\mathbf{side}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$.
Constraint: if ${\mathbf{side}}=\mathrm{Nag_LeftSide}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
On entry, ${\mathbf{side}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$.
Constraint: if ${\mathbf{side}}=\mathrm{Nag_RightSide}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INT
On entry, ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{m}}\ge 0$.
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 0$.
NE_INT_2
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

## 7Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

## 8Parallelism and Performance

f16zfc is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

None.

## 10Example

Premultiply complex $4×2$ matrix $B$ by lower triangular $4×4$ matrix $A$, $B←AB$, where
 $A = ( 4.78+4.56i 2.00-0.30i -4.11+1.25i 2.89-1.34i 2.36-4.25i 4.15+0.80i -1.89+1.15i 0.04-3.69i -0.02+0.46i 0.33-0.26i )$
and
 $B = ( -5.0-2.0i 1.0+5.0i -3.0-1.0i -2.0-2.0i 2.0+1.0i 3.0+4.0i 4.0+3.0i 4.0-3.0i ) .$

### 10.1Program Text

Program Text (f16zfce.c)

### 10.2Program Data

Program Data (f16zfce.d)

### 10.3Program Results

Program Results (f16zfce.r)