NAG FL Interface
f06ukf (zlantp)

Settings help

FL Name Style:


FL Specification Language:


1 Purpose

f06ukf returns, via the function name, the value of the 1-norm, the -norm, the Frobenius norm, or the maximum absolute value of the elements of a complex n×n triangular matrix, stored in packed form.

2 Specification

Fortran Interface
Function f06ukf ( norm, uplo, diag, n, ap, work)
Real (Kind=nag_wp) :: f06ukf
Integer, Intent (In) :: n
Real (Kind=nag_wp), Intent (Inout) :: work(*)
Complex (Kind=nag_wp), Intent (In) :: ap(*)
Character (1), Intent (In) :: norm, uplo, diag
C Header Interface
#include <nag.h>
double  f06ukf_ (const char *norm, const char *uplo, const char *diag, const Integer *n, const Complex ap[], double work[], const Charlen length_norm, const Charlen length_uplo, const Charlen length_diag)
The routine may be called by the names f06ukf or nagf_blas_zlantp.

3 Description

None.

4 References

None.

5 Arguments

1: norm Character(1) Input
On entry: specifies the value to be returned.
norm='1' or 'O'
The 1-norm.
norm='I'
The -norm.
norm='F' or 'E'
The Frobenius (or Euclidean) norm.
norm='M'
The value maxi,j|aij| (not a norm).
Constraint: norm='1', 'O', 'I', 'F', 'E' or 'M'.
2: uplo Character(1) Input
On entry: specifies whether A is upper or lower triangular.
uplo='U'
A is upper triangular.
uplo='L'
A is lower triangular.
Constraint: uplo='U' or 'L'.
3: diag Character(1) Input
On entry: specifies whether A has nonunit or unit diagonal elements.
diag='N'
The diagonal elements are stored explicitly.
diag='U'
The diagonal elements are assumed to be 1, and are not referenced.
Constraint: diag='N' or 'U'.
4: n Integer Input
On entry: n, the order of the matrix A.
When n=0, f06ukf returns zero.
Constraint: n0.
5: ap(*) Complex (Kind=nag_wp) array Input
Note: the dimension of the array ap must be at least n× (n+1)/2 .
On entry: the n×n triangular matrix A, packed by columns.
More precisely,
  • if uplo='U', the upper triangle of A must be stored with element Aij in ap(i+j(j-1)/2) for ij;
  • if uplo='L', the lower triangle of A must be stored with element Aij in ap(i+(2n-j)(j-1)/2) for ij.
If diag='U', the diagonal elements of A are assumed to be 1, and are not referenced; the same storage scheme is used whether diag='N' or ‘U’.
6: work(*) Real (Kind=nag_wp) array Workspace
Note: the dimension of the array work must be at least max(1,n) if norm='I', and at least 1 otherwise.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

f06ukf is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.