f08wfc is the third step in the solution of the real generalized eigenvalue problem
The (optional) first step balances the two matrices using
f08whc. In the second step, matrix
is reduced to upper triangular form using the
factorization function
f08aec and this orthogonal transformation
is applied to matrix
by calling
f08agc. The driver,
f08wcc, solves the real generalized eigenvalue problem by combining all the required steps including those just listed.
f08wfc reduces a pair of real matrices
, where
is upper triangular, to the generalized upper Hessenberg form using orthogonal transformations. This two-sided transformation is of the form
where
is an upper Hessenberg matrix,
is an upper triangular matrix and
and
are orthogonal matrices determined as products of Givens rotations. They may either be formed explicitly, or they may be postmultiplied into input matrices
and
, so that
Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J. Numer. Anal. 10 241–256
- NE_ALLOC_FAIL
-
Dynamic memory allocation failed.
See
Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
- NE_BAD_PARAM
-
On entry, argument had an illegal value.
- NE_ENUM_INT_2
-
On entry, , and .
Constraint: if or , ;
if , .
On entry, , and .
Constraint: if or , ;
if , .
- NE_INT
-
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
- NE_INT_2
-
On entry, and .
Constraint: .
On entry, and .
Constraint: .
- NE_INT_3
-
On entry, , and .
Constraint: if , ;
if , and .
- NE_INTERNAL_ERROR
-
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact
NAG for assistance.
See
Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
- NE_NO_LICENCE
-
Your licence key may have expired or may not have been installed correctly.
See
Section 8 in the Introduction to the NAG Library CL Interface for further information.
The reduction to the generalized Hessenberg form is implemented using orthogonal transformations which are backward stable.
Please consult the
X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the
Users' Note for your implementation for any additional implementation-specific information.
This function is usually followed by
f08xec which implements the
algorithm for computing generalized eigenvalues of a reduced pair of matrices.
The complex analogue of this function is
f08wtc.