NAG CL Interface
f08tec (dspgst)

Settings help

CL Name Style:


1 Purpose

f08tec reduces a real symmetric-definite generalized eigenproblem Az=λBz, ABz=λz or BAz=λz to the standard form Cy=λy, where A is a real symmetric matrix and B has been factorized by f07gdc, using packed storage.

2 Specification

#include <nag.h>
void  f08tec (Nag_OrderType order, Nag_ComputeType comp_type, Nag_UploType uplo, Integer n, double ap[], const double bp[], NagError *fail)
The function may be called by the names: f08tec, nag_lapackeig_dspgst or nag_dspgst.

3 Description

To reduce the real symmetric-definite generalized eigenproblem Az=λBz, ABz=λz or BAz=λz to the standard form Cy=λy using packed storage, f08tec must be preceded by a call to f07gdc which computes the Cholesky factorization of B; B must be positive definite.
The different problem types are specified by the argument comp_type, as indicated in the table below. The table shows how C is computed by the function, and also how the eigenvectors z of the original problem can be recovered from the eigenvectors of the standard form.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Arguments

1: order Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2: comp_type Nag_ComputeType Input
On entry: indicates how the standard form is computed.
comp_type=Nag_Compute_1
  • if uplo=Nag_Upper, C=U-TAU-1;
  • if uplo=Nag_Lower, C=L-1AL-T.
comp_type=Nag_Compute_2 or Nag_Compute_3
  • if uplo=Nag_Upper, C=UAUT;
  • if uplo=Nag_Lower, C=LTAL.
Constraint: comp_type=Nag_Compute_1, Nag_Compute_2 or Nag_Compute_3.
3: uplo Nag_UploType Input
On entry: indicates whether the upper or lower triangular part of A is stored and how B has been factorized.
uplo=Nag_Upper
The upper triangular part of A is stored and B=UTU.
uplo=Nag_Lower
The lower triangular part of A is stored and B=LLT.
Constraint: uplo=Nag_Upper or Nag_Lower.
4: n Integer Input
On entry: n, the order of the matrices A and B.
Constraint: n0.
5: ap[dim] double Input/Output
Note: the dimension, dim, of the array ap must be at least max(1,n×(n+1)/2).
On entry: the upper or lower triangle of the n×n symmetric matrix A, packed by rows or columns.
The storage of elements Aij depends on the order and uplo arguments as follows:
if order=Nag_ColMajor and uplo=Nag_Upper,
Aij is stored in ap[(j-1)×j/2+i-1], for ij;
if order=Nag_ColMajor and uplo=Nag_Lower,
Aij is stored in ap[(2n-j)×(j-1)/2+i-1], for ij;
if order=Nag_RowMajor and uplo=Nag_Upper,
Aij is stored in ap[(2n-i)×(i-1)/2+j-1], for ij;
if order=Nag_RowMajor and uplo=Nag_Lower,
Aij is stored in ap[(i-1)×i/2+j-1], for ij.
On exit: the upper or lower triangle of ap is overwritten by the corresponding upper or lower triangle of C as specified by comp_type and uplo, using the same packed storage format as described above.
6: bp[dim] const double Input
Note: the dimension, dim, of the array bp must be at least max(1,n×(n+1)/2).
On entry: the Cholesky factor of B as specified by uplo and returned by f07gdc.
7: fail NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, n=value.
Constraint: n0.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B-1 if (comp_type=Nag_Compute_1) or B (if comp_type=Nag_Compute_2 or Nag_Compute_3). When f08tec is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if B is ill-conditioned with respect to inversion.

8 Parallelism and Performance

f08tec makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately n3.
The complex analogue of this function is f08tsc.

10 Example

This example computes all the eigenvalues of Az=λBz, where
A = ( 0.24 0.39 0.42 -0.16 0.39 -0.11 0.79 0.63 0.42 0.79 -0.25 0.48 -0.16 0.63 0.48 -0.03 )   and   B= ( 4.16 -3.12 0.56 -0.10 -3.12 5.03 -0.83 1.09 0.56 -0.83 0.76 0.34 -0.10 1.09 0.34 1.18 ) ,  
using packed storage. Here B is symmetric positive definite and must first be factorized by f07gdc. The program calls f08tec to reduce the problem to the standard form Cy=λy; then f08gec to reduce C to tridiagonal form, and f08jfc to compute the eigenvalues.

10.1 Program Text

Program Text (f08tece.c)

10.2 Program Data

Program Data (f08tece.d)

10.3 Program Results

Program Results (f08tece.r)