The function may be called by the names: f08apc, nag_lapackeig_zgeqrt or nag_zgeqrt.
3Description
f08apc forms the factorization of an arbitrary rectangular complex matrix. No pivoting is performed.
It differs from f08asc in that it: requires an explicit block size; stores reflector factors that are upper triangular matrices of the chosen block size (rather than scalars); and recursively computes the factorization based on the algorithm of Elmroth and Gustavson (2000).
If , the factorization is given by:
where is an upper triangular matrix (with real diagonal elements) and is an unitary matrix. It is sometimes more convenient to write the factorization as
which reduces to
where consists of the first columns of , and the remaining columns.
If , is upper trapezoidal, and the factorization can be written
where is upper triangular and is rectangular.
The matrix is not formed explicitly but is represented as a product of elementary reflectors (see the F08 Chapter Introduction for details). Functions are provided to work with in this representation (see Section 9).
Note also that for any , the information returned represents a factorization of the first columns of the original matrix .
4References
Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel Factorization Leads to Better Performance IBM Journal of Research and Development. (Volume 44)4 605–624
Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore
5Arguments
1: – Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by . See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint:
or .
2: – IntegerInput
On entry: , the number of rows of the matrix .
Constraint:
.
3: – IntegerInput
On entry: , the number of columns of the matrix .
Constraint:
.
4: – IntegerInput
On entry: the explicitly chosen block size to be used in computing the factorization. See Section 9 for details.
Constraint:
if , .
5: – ComplexInput/Output
Note: the dimension, dim, of the array a
must be at least
when
;
when
.
The th element of the matrix is stored in
when ;
when .
On entry: the matrix .
On exit: if , the elements below the diagonal are overwritten by details of the unitary matrix and the upper triangle is overwritten by the corresponding elements of the upper triangular matrix .
If , the strictly lower triangular part is overwritten by details of the unitary matrix and the remaining elements are overwritten by the corresponding elements of the upper trapezoidal matrix .
The diagonal elements of are real.
6: – IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraints:
if ,
;
if , .
7: – ComplexOutput
Note: the dimension, dim, of the array t
must be at least
when
;
when
.
The th element of the matrix is stored in
when ;
when .
On exit: further details of the unitary matrix . The number of blocks is , where and each block is of order nb except for the last block, which is of order . For each of the blocks, an upper triangular block reflector factor is computed: . These are stored in the matrix as .
8: – IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array t.
Constraints:
if ,
;
if , .
9: – NagError *Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).
6Error Indicators and Warnings
NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_BAD_PARAM
On entry, argument had an illegal value.
NE_INT
On entry, .
Constraint: .
On entry, .
Constraint: .
NE_INT_2
On entry, and .
Constraint: .
On entry, and .
Constraint: .
On entry, and .
Constraint: .
NE_INT_3
On entry, , and .
Constraint: if , .
On entry, , and .
Constraint: .
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.
7Accuracy
The computed factorization is the exact factorization of a nearby matrix , where
and is the machine precision.
8Parallelism and Performance
f08apc makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.
9Further Comments
The total number of real floating-point operations is approximately if or if .
To apply to an arbitrary complex rectangular matrix , f08apc may be followed by a call to f08aqc
. For example,
To form the unitary matrix explicitly, simply initialize the matrix to the identity matrix and form using f08aqc as above.
The block size, nb, used by f08apc is supplied explicitly through the interface. For moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the algorithm with the optimal value being dependent on problem size and platform. A value of is likely to achieve good efficiency and it is unlikely that an optimal value would exceed .
To compute a factorization with column pivoting, use f08bpcorf08btc.