f07bpc uses the factorization to compute the solution to a complex system of linear equations
where is an band matrix with subdiagonals and superdiagonals, and and are matrices. Error bounds on the solution and a condition estimate are also provided.
The function may be called by the names: f07bpc, nag_lapacklin_zgbsvx or nag_zgbsvx.
3Description
f07bpc performs the following steps:
1.Equilibration
The linear system to be solved may be badly scaled. However, the system can be equilibrated as a first stage by setting . In this case, real scaling factors are computed and these factors then determine whether the system is to be equilibrated. Equilibrated forms of the systems , and are
and
respectively, where and are diagonal matrices, with positive diagonal elements, formed from the computed scaling factors.
When equilibration is used, will be overwritten by and will be overwritten by (or when the solution of or is sought).
2.Factorization
The matrix , or its scaled form, is copied and factored using the decomposition
where is a permutation matrix, is a unit lower triangular matrix, and is upper triangular.
This stage can be by-passed when a factored matrix (with scaled matrices and scaling factors) are supplied; for example, as provided by a previous call to f07bpc with the same matrix .
3.Condition Number Estimation
The factorization of determines whether a solution to the linear system exists. If some diagonal element of is zero, then is exactly singular, no solution exists and the function returns with a failure. Otherwise the factorized form of is used to estimate the condition number of the matrix . If the reciprocal of the condition number is less than machine precision then a warning code is returned on final exit.
4.Solution
The (equilibrated) system is solved for ( or ) using the factored form of ().
5.Iterative Refinement
Iterative refinement is applied to improve the computed solution matrix and to calculate error bounds and backward error estimates for the computed solution.
6.Construct Solution Matrix
If equilibration was used, the matrix is premultiplied by (if ) or (if or ) so that it solves the original system before equilibration.
4References
Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia https://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia
5Arguments
1: – Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by . See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint:
or .
2: – Nag_FactoredFormTypeInput
On entry: specifies whether or not the factorized form of the matrix is supplied on entry, and if not, whether the matrix should be equilibrated before it is factorized.
afb and ipiv contain the factorized form of . If , the matrix has been equilibrated with scaling factors given by r and c. ab, afb and ipiv are not modified.
The matrix will be equilibrated if necessary, then copied to afb and factorized.
Constraint:
, or .
3: – Nag_TransTypeInput
On entry: specifies the form of the system of equations.
(No transpose).
(Transpose).
(Conjugate transpose).
Constraint:
, or .
4: – IntegerInput
On entry: , the number of linear equations, i.e., the order of the matrix .
Constraint:
.
5: – IntegerInput
On entry: , the number of subdiagonals within the band of the matrix .
Constraint:
.
6: – IntegerInput
On entry: , the number of superdiagonals within the band of the matrix .
Constraint:
.
7: – IntegerInput
On entry: , the number of right-hand sides, i.e., the number of columns of the matrix .
Constraint:
.
8: – ComplexInput/Output
Note: the dimension, dim, of the array ab
must be at least
.
On entry: the coefficient matrix .
This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements , for row and column , depends on the order argument as follows:
If , details of the factorization of the band matrix , as computed by f07brc.
The elements, , of the upper triangular band factor with super-diagonals, and the multipliers, , used to form the lower triangular factor are stored. The elements , for and , and , for and , are stored where is stored on entry.
If , afb is the factorized form of the equilibrated matrix .
Otherwise, if no constraints are violated, then if , afb returns details of the factorization of the band matrix , and if , afb returns details of the factorization of the equilibrated band matrix (see the description of ab for the form of the equilibrated matrix).
11: – IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix in the array
afb.
Constraint:
.
12: – IntegerInput/Output
Note: the dimension, dim, of the array ipiv
must be at least
.
Otherwise, if no constraints are violated, ipiv contains the pivot indices that define the permutation matrix ; at the th step row of the matrix was interchanged with row . indicates a row interchange was not required.
If , the pivot indices are those corresponding to the factorization of the original matrix .
If , the pivot indices are those corresponding to the factorization of of the equilibrated matrix .
Otherwise, if no constraints are violated and or , r contains the row scale factors for , , such that is multiplied on the left by ; each element of r is positive.
15: – doubleInput/Output
Note: the dimension, dim, of the array c
must be at least
.
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraints:
if ,
;
if , .
18: – ComplexOutput
Note: the dimension, dim, of the array x
must be at least
when
;
when
.
The th element of the matrix is stored in
when ;
when .
On exit: if NE_NOERROR or NE_SINGULAR_WP, the solution matrix to the original system of equations. Note that the arrays and are modified on exit if , and the solution to the equilibrated system is if and or , or if or and or .
19: – IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array x.
Constraints:
if ,
;
if , .
20: – double *Output
On exit: if no constraints are violated, an estimate of the reciprocal condition number of the matrix (after equilibration if that is performed), computed as .
21: – doubleOutput
On exit: if NE_NOERROR or NE_SINGULAR_WP, an estimate of the forward error bound for each computed solution vector, such that where is the th column of the computed solution returned in the array x and is the corresponding column of the exact solution . The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.
22: – doubleOutput
On exit: if NE_NOERROR or NE_SINGULAR_WP, an estimate of the component-wise relative backward error of each computed solution vector (i.e., the smallest relative change in any element of or that makes an exact solution).
23: – double *Output
On exit: if NE_NOERROR, the reciprocal pivot growth factor , where denotes the maximum absolute element norm. If , the stability of the factorization of (equilibrated) could be poor. This also means that the solution x, condition estimate rcond, and forward error bound ferr could be unreliable. If the factorization fails with NE_SINGULAR, then contains the reciprocal pivot growth factor for the leading columns of .
24: – NagError *Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).
6Error Indicators and Warnings
NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_BAD_PARAM
On entry, argument had an illegal value.
NE_INT
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, . Constraint: .
On entry, . Constraint: .
On entry, . Constraint: .
On entry, . Constraint: .
NE_INT_2
On entry, and .
Constraint: .
On entry, and .
Constraint: .
On entry, and .
Constraint: .
On entry, and .
Constraint: .
NE_INT_3
On entry, , and .
Constraint: .
On entry, , and .
Constraint: .
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.
NE_SINGULAR
Element of the diagonal is exactly zero.
The factorization has been completed, but the factor
is exactly singular, so the solution and error bounds could not be computed.
is returned.
NE_SINGULAR_WP
is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there
are a number of situations where the computed solution can be more accurate
than the value of rcond would suggest.
7Accuracy
For each right-hand side vector , the computed solution is the exact solution of a perturbed system of equations , where
is a modest linear function of , and is the machine precision. See Section 9.3 of Higham (2002) for further details.
If is the true solution, then the computed solution satisfies a forward error bound of the form
where
.
If is the th column of , then is returned in and a bound on is returned in . See Section 4.4 of Anderson et al. (1999) for further details.
8Parallelism and Performance
f07bpc is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f07bpc makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.
9Further Comments
The band storage scheme for the array ab is illustrated by the following example, when , , and . Storage of the band matrix in the array ab:
The total number of floating-point operations required to solve the equations depends upon the pivoting required, but if then it is approximately bounded by for the factorization and for the solution following the factorization. The condition number estimation typically requires between four and five solves and never more than eleven solves, following the factorization. The solution is then refined, and the errors estimated, using iterative refinement; see f07bvc for information on the floating-point operations required.
In practice the condition number estimator is very reliable, but it can underestimate the true condition number; see Section 15.3 of Higham (2002) for further details.
Estimates for the backward errors, forward errors, condition number and pivot growth are also output, together with information on the equilibration of .