NAG CL Interface
d06dac (dim2_​transform_​affine)

Settings help

CL Name Style:


1 Purpose

d06dac is a utility which performs an affine transformation of a given mesh.

2 Specification

#include <nag.h>
void  d06dac (Integer mode, Integer nv, Integer nedge, Integer nelt, Integer ntrans, const Integer itype[], const double trans[], double coori[], Integer edgei[], Integer conni[], double cooro[], Integer edgeo[], Integer conno[], Integer itrace, const char *outfile, NagError *fail)
The function may be called by the names: d06dac, nag_mesh_dim2_transform_affine or nag_mesh2d_trans.

3 Description

d06dac generates a mesh (coordinates, triangle/vertex connectivities and edge/vertex connectivities) resulting from an affine transformation of a given mesh. This transformation is of the form Y=A×X+B, where
Such a transformation includes a translation, a rotation, a scale reduction or increase, a symmetric transformation with respect to a user-supplied line, a user-supplied analytic transformation, or a composition of several transformations.
This function is partly derived from material in the MODULEF package from INRIA (Institut National de Recherche en Informatique et Automatique).

4 References

None.

5 Arguments

1: mode Integer Input
On entry: if mode=1, the arguments coori, edgei and conni are overwritten on exit by the output values described in cooro, edgeo and conno respectively. In this case cooro, edgeo and conno are not referenced, and you can save storage space.
If mode1, no such aliasing is assumed.
2: nv Integer Input
On entry: the total number of vertices in the input mesh.
Constraint: nv3.
3: nedge Integer Input
On entry: the number of the boundary or interface edges in the input mesh.
Constraint: nedge1.
4: nelt Integer Input
On entry: the number of triangles in the input mesh.
Constraint: nelt2×nv-1.
5: ntrans Integer Input
On entry: the number of transformations of the input mesh.
Constraint: ntrans1.
6: itype[ntrans] const Integer Input
On entry: itype[i-1], for i=1,2,,ntrans, indicates the type of each transformation as follows:
itype[i-1]=0
Identity transformation.
itype[i-1]=1
Translation.
itype[i-1]=2
Symmetric transformation with respect to a user-supplied line.
itype[i-1]=3
Rotation.
itype[i-1]=4
Scaling.
itype[i-1]=10
User-supplied analytic transformation.
Note that the transformations are applied in the order described in itype.
Constraint: itype[i-1]=0, 1, 2, 3, 4 or 10, for i=1,2,,ntrans.
7: trans[6×ntrans] const double Input
On entry: the arguments for each transformation. For i=1,2,,ntrans, trans[(i-1)×6] to trans[(i-1)×6+5] contain the arguments of the ith transformation.
If itype[i-1]=0, elements trans[(i-1)×6] to trans[(i-1)×6+5] are not referenced.
If itype[i-1]=1, the translation vector is u= ( a b ) , where a=trans[(i-1)×6] and b=trans[(i-1)×6+1], while elements trans[(i-1)×6+2] to trans[(i-1)×6+5] are not referenced.
If itype[i-1]=2, the user-supplied line is the curve {(x,y)2; such that ax+by+c=0}, where a=trans[(i-1)×6], b=trans[(i-1)×6+1] and c=trans[(i-1)×6+2], while elements trans[(i-1)×6+3] to trans[(i-1)×6+5] are not referenced.
If itype[i-1]=3, the centre of the rotation is (x0,y0) where x0=trans[(i-1)×6] and y0=trans[(i-1)×6+1], θ=trans[(i-1)×6+2] is its angle in degrees, while elements trans[(i-1)×6+3] to trans[(i-1)×6+5] are not referenced.
If itype[i-1]=4, a=trans[(i-1)×6] is the scaling coefficient in the x-direction, b=trans[(i-1)×6+1] is the scaling coefficient in the y-direction, and (x0,y0) are the scaling centre coordinates, with x0=trans[(i-1)×6+2] and y0=trans[(i-1)×6+3]; while elements trans[(i-1)×6+4] to trans[(i-1)×6+5] are not referenced.
If itype[i-1]=10, the user-supplied analytic affine transformation Y=A×X+B is such that A=(akl)1k,l2 and B=(bk)1k2 whereakl=trans[(i-1)×6+2×(k-1)+l-1], and bk=trans[(i-1)×6+4+k-1] with k,l=1,2.
8: coori[2×nv] double Input/Output
Note: the (i,j)th element of the matrix is stored in coori[(j-1)×2+i-1].
On entry: coori[(i-1)×2] contains the x coordinate of the ith vertex of the input mesh, for i=1,2,,nv; while coori[(i-1)×2+1] contains the corresponding y coordinate.
On exit: if mode=1, coori is assumed to hold the values of cooro.
9: edgei[3×nedge] Integer Input/Output
Note: the (i,j)th element of the matrix is stored in edgei[(j-1)×3+i-1].
On entry: the specification of the boundary or interface edges. edgei[(j-1)×3] and edgei[(j-1)×3+1] contain the vertex numbers of the two end points of the jth boundary edge. edgei[(j-1)×3+2] is a user-supplied tag for the jth boundary edge. Note that the edge vertices are numbered from 1 to nv.
Constraint: 1edgei[(j-1)×3+i-1]nv and edgei[(j-1)×3]edgei[(j-1)×3+1], for i=1,2 and j=1,2,,nedge.
On exit: if mode=1, edgei holds the output values described in edgeo.
10: conni[3×nelt] Integer Input/Output
Note: the (i,j)th element of the matrix is stored in conni[(j-1)×3+i-1].
On entry: the connectivity of the input mesh between triangles and vertices. For each triangle j, conni[(j-1)×3+i-1] gives the indices of its three vertices (in anticlockwise order), for i=1,2,3 and j=1,2,,nelt. Note that the mesh vertices are numbered from 1 to nv.
Constraints:
  • 1conni[(j-1)×3+i-1]nv;
  • conni[(j-1)×3]conni[(j-1)×3+1];
  • conni[(j-1)×3]conni[(j-1)×3+2] and conni[(j-1)×3+1]conni[(j-1)×3+2], for i=1,2,3 and j=1,2,,nelt.
On exit: if mode=1, conni holds the output values described in conno.
11: cooro[dim] double Output
Note: the dimension, dim, of the array cooro must be at least
  • if mode12×nv;
  • otherwise cooro is not referenced.
The (i,j)th element of the matrix is stored in cooro[(j-1)×2+i-1].
On exit: cooro[(i-1)×2] will contain the x coordinate of the ith vertex of the transformed mesh, for i=1,2,,nv; while cooro[(i-1)×2+1] will contain the corresponding y coordinate. If mode=1 the results are instead overwritten in coori.
12: edgeo[dim] Integer Output
Note: the dimension, dim, of the array edgeo must be at least
  • if mode13×nedge;
  • otherwise edgeo is not referenced.
The (i,j)th element of the matrix is stored in edgeo[(j-1)×3+i-1].
On exit: the specification of the boundary or interface edges of the transformed mesh. If the number of symmetric transformations is even or zero thenedgeo[(j-1)×3+i-1]=edgei[(j-1)×3+i-1], for i=1,2,3 and j=1,2,,nedge; otherwise edgeo[(j-1)×3]=edgei[(j-1)×3+1],edgeo[(j-1)×3+1]=edgei[(j-1)×3] and edgeo[(j-1)×3+2]=edgei[(j-1)×3+2], for j=1,2,,nedge. If mode=1 the results are overwritten in edgei.
13: conno[dim] Integer Output
Note: the dimension, dim, of the array conno must be at least
  • if mode13×nelt;
  • max(1,3) otherwise.
The (i,j)th element of the matrix is stored in conno[(j-1)×3+i-1].
On exit: the connectivity of the transformed mesh between triangles and vertices. If the number of symmetric transformations is even or zero thenconno[(j-1)×3+i-1]=conni[(j-1)×3+i-1], for i=1,2,3 and j=1,2,,nelt; otherwise conno[(j-1)×3]=conni[(j-1)×3], conno[(j-1)×3+1]=conni[(j-1)×3+2] and conno[(j-1)×3+2]=conni[(j-1)×3+1], for j=1,2,,nelt. Note that the mesh vertices are numbered from 1 to nv. If mode=1 the results are instead overwritten in conni.
14: itrace Integer Input
On entry: the level of trace information required from d06dac.
itrace0
No output is generated.
itrace1
Details of each transformation, the matrix A and the vector B of the final transformation, which is the composition of all the ntrans transformations, are printed.
15: outfile const char * Input
On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the diagnostic output will be directed to standard output.
16: fail NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, nedge=value.
Constraint: nedge1.
On entry, ntrans=value.
Constraint: ntrans>0.
On entry, ntrans=value.
Constraint: ntrans1.
On entry, nv=value.
Constraint: nv3.
NE_INT_2
On entry, itype[I-1]=value and I=value.
Constraint: itype[I-1]=0, 1, 2, 3, 4 or 10.
On entry, nelt=value and nv=value.
Constraint: nelt2×nv-1.
On entry, the end points of the edge J have the same index I: J=value and I=value.
On entry, vertices 1 and 2 of the triangle K have the same index I: K=value and I=value.
On entry, vertices 1 and 3 of the triangle K have the same index I: K=value and I=value.
On entry, vertices 2 and 3 of the triangle K have the same index I: K=value and I=value.
NE_INT_4
On entry, conni(I,J)=value, I=value, J=value and nv=value.
Constraint: conni(I,J)1 and conni(I,J)nv, where conni(I,J) denotes conni[(J-1)×3+I-1].
On entry, edgei(I,J)=value, I=value, J=value and nv=value.
Constraint: edgei(I,J)1 and edgei(I,J)nv, where edgei(I,J) denotes edgei[(J-1)×3+I-1].
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
A serious error has occurred in an internal call to an auxiliary function. Check the input mesh especially the connectivities and the details of each transformations.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.
NE_NOT_CLOSE_FILE
Cannot close file value.
NE_NOT_WRITE_FILE
Cannot open file value for writing.

7 Accuracy

Not applicable.

8 Parallelism and Performance

d06dac is not threaded in any implementation.

9 Further Comments

None.

10 Example

For an example of the use of this utility function, see d06dbc.