NAG AD Library
c05qd (sys_func_rcomm)

Settings help

AD Name Style:


AD Specification Language:

1 Purpose

c05qd is the AD Library version of the primal routine c05qdf. Based (in the C++ interface) on overload resolution, c05qd can be used for primal, tangent and adjoint evaluation. It supports tangents and adjoints of first order.

2 Specification

Fortran Interface
Subroutine c05qd_AD_f ( irevcm, n, x, fvec, xtol, ml, mu, epsfcn, mode, diag, factor, fjac, r, qtf, iwsav, rwsav, ifail)
Integer, Intent (In) :: n, ml, mu, mode
Integer, Intent (Inout) :: irevcm, iwsav(17), ifail
ADTYPE, Intent (In) :: xtol, epsfcn, factor
ADTYPE, Intent (Inout) :: x(n), fvec(n), diag(n), fjac(n,n), r(n*(n+1)/2), qtf(n), rwsav(4*n+10)
Type (c_ptr), Intent (Inout) :: ad_handle
Corresponding to the overloaded C++ function, the Fortran interface provides five routines with names reflecting the type used for active real arguments. The actual subroutine and type names are formed by replacing AD and ADTYPE in the above as follows:
when ADTYPE is Real(kind=nag_wp) then AD is p0w
when ADTYPE is Type(nagad_a1w_w_rtype) then AD is a1w
when ADTYPE is Type(nagad_t1w_w_rtype) then AD is t1w
C++ Interface
#include <dco.hpp>
#include <nagad.h>
namespace nag {
namespace ad {
void c05qd ( handle_t &ad_handle, Integer &irevcm, const Integer &n, ADTYPE x[], ADTYPE fvec[], const ADTYPE &xtol, const Integer &ml, const Integer &mu, const ADTYPE &epsfcn, const Integer &mode, ADTYPE diag[], const ADTYPE &factor, ADTYPE fjac[], ADTYPE r[], ADTYPE qtf[], Integer iwsav[], ADTYPE rwsav[], Integer &ifail)
}
}
The function is overloaded on ADTYPE which represents the type of active arguments. ADTYPE may be any of the following types:
double,
dco::ga1s<double>::type,
dco::gt1s<double>::type
Note: this function can be used with AD tools other than dco/c++. For details, please contact NAG.

3 Description

c05qd is the AD Library version of the primal routine c05qdf.
c05qdf is a comprehensive reverse communication routine that finds a solution of a system of nonlinear equations by a modification of the Powell hybrid method. For further information see Section 3 in the documentation for c05qdf.

4 References

Moré J J, Garbow B S and Hillstrom K E (1980) User guide for MINPACK-1 Technical Report ANL-80-74 Argonne National Laboratory
Powell M J D (1970) A hybrid method for nonlinear algebraic equations Numerical Methods for Nonlinear Algebraic Equations (ed P Rabinowitz) Gordon and Breach

5 Arguments

In addition to the arguments present in the interface of the primal routine, c05qd includes some arguments specific to AD.
A brief summary of the AD specific arguments is given below. For the remainder, links are provided to the corresponding argument from the primal routine. A tooltip popup for all arguments can be found by hovering over the argument name in Section 2 and in this section.
1: ad_handlenag::ad::handle_t Input/Output
On entry: a configuration object that holds information on the differentiation strategy. Details on setting the AD strategy are described in AD handle object in the NAG AD Library Introduction.
2: irevcm – Integer Input/Output
3: n – Integer Input
4: x(n) – ADTYPE array Input/Output
Please consult Overwriting of Inputs in the NAG AD Library Introduction.
5: fvec(n) – ADTYPE array Input/Output
Please consult Overwriting of Inputs in the NAG AD Library Introduction.
6: xtolADTYPE Input
7: ml – Integer Input
8: mu – Integer Input
9: epsfcnADTYPE Input
10: mode – Integer Input
11: diag(n) – ADTYPE array Input/Output
Please consult Overwriting of Inputs in the NAG AD Library Introduction.
12: factorADTYPE Input
13: fjac(n, n) – ADTYPE array Input/Output
Please consult Overwriting of Inputs in the NAG AD Library Introduction.
14: r(n×(n+1)/2) – ADTYPE array Input/Output
Please consult Overwriting of Inputs in the NAG AD Library Introduction.
15: qtf(n) – ADTYPE array Input/Output
Please consult Overwriting of Inputs in the NAG AD Library Introduction.
16: iwsav(17) – Integer array Communication Array
17: rwsav(4×n+10) – ADTYPE array Communication Array
Please consult Overwriting of Inputs in the NAG AD Library Introduction.
18: ifail – Integer Input/Output

6 Error Indicators and Warnings

c05qd preserves all error codes from c05qdf and in addition can return:
ifail=-89
An unexpected AD error has been triggered by this routine. Please contact NAG.
See Error Handling in the NAG AD Library Introduction for further information.
ifail=-199
The routine was called using a strategy that has not yet been implemented.
See AD Strategies in the NAG AD Library Introduction for further information.
ifail=-444
A C++ exception was thrown.
The error message will show the details of the C++ exception text.
ifail=-899
Dynamic memory allocation failed for AD.
See Error Handling in the NAG AD Library Introduction for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

c05qd is not threaded in any implementation.

9 Further Comments

None.

10 Example

The following examples are variants of the example for c05qdf, modified to demonstrate calling the NAG AD Library.
Description of the primal example.
This example determines the values x1 , , x9 which satisfy the tridiagonal equations:
(3-2x1)x1-2x2 = −1, -xi-1+(3-2xi)xi-2xi+1 = −1,  i=2,3,,8 -x8+(3-2x9)x9 = −1.  

10.1 Adjoint modes

Language Source File Data Results
Fortran c05qd_a1w_fe.f90 None c05qd_a1w_fe.r
C++ c05qd_a1w_hcppe.cpp None c05qd_a1w_hcppe.r

10.2 Tangent modes

Language Source File Data Results
Fortran c05qd_t1w_fe.f90 None c05qd_t1w_fe.r
C++ c05qd_t1w_hcppe.cpp None c05qd_t1w_hcppe.r

10.3 Passive mode

Language Source File Data Results
Fortran c05qd_p0w_fe.f90 None c05qd_p0w_fe.r
C++ c05qd_p0w_hcppe.cpp None c05qd_p0w_hcppe.r