NAG FL Interface
s17auf (airy_ai_real_vector)
1
Purpose
s17auf returns an array of values for the Airy function, .
2
Specification
Fortran Interface
Integer, Intent (In) |
:: |
n |
Integer, Intent (Inout) |
:: |
ifail |
Integer, Intent (Out) |
:: |
ivalid(n) |
Real (Kind=nag_wp), Intent (In) |
:: |
x(n) |
Real (Kind=nag_wp), Intent (Out) |
:: |
f(n) |
|
C Header Interface
#include <nag.h>
void |
s17auf_ (const Integer *n, const double x[], double f[], Integer ivalid[], Integer *ifail) |
|
C++ Header Interface
#include <nag.h> extern "C" {
void |
s17auf_ (const Integer &n, const double x[], double f[], Integer ivalid[], Integer &ifail) |
}
|
The routine may be called by the names s17auf or nagf_specfun_airy_ai_real_vector.
3
Description
s17auf evaluates an approximation to the Airy function, for an array of arguments , for . It is based on a number of Chebyshev expansions:
For
,
where
, and
and
are expansions in the variable
.
For
,
where
and
are expansions in
For
,
where
is an expansion in
.
For
,
where
is an expansion in
.
For
,
where
and
is an expansion in
.
For , the result is set directly to . This both saves time and guards against underflow in intermediate calculations.
For large negative arguments, it becomes impossible to calculate the phase of the oscillatory function with any precision and so the routine must fail. This occurs if , where is the machine precision.
For large positive arguments, where decays in an essentially exponential manner, there is a danger of underflow so the routine must fail.
4
References
5
Arguments
-
1:
– Integer
Input
-
On entry: , the number of points.
Constraint:
.
-
2:
– Real (Kind=nag_wp) array
Input
-
On entry: the argument of the function, for .
-
3:
– Real (Kind=nag_wp) array
Output
-
On exit: , the function values.
-
4:
– Integer array
Output
-
On exit:
contains the error code for
, for
.
- No error.
- is too large and positive. contains zero. The threshold value is the same as for in s17agf, as defined in the Users' Note for your implementation.
- is too large and negative. contains zero. The threshold value is the same as for in s17agf, as defined in the Users' Note for your implementation.
-
5:
– Integer
Input/Output
-
On entry:
ifail must be set to
,
or
to set behaviour on detection of an error; these values have no effect when no error is detected.
A value of causes the printing of an error message and program execution will be halted; otherwise program execution continues. A value of means that an error message is printed while a value of means that it is not.
If halting is not appropriate, the value
or
is recommended. If message printing is undesirable, then the value
is recommended. Otherwise, the value
is recommended.
When the value or is used it is essential to test the value of ifail on exit.
On exit:
unless the routine detects an error or a warning has been flagged (see
Section 6).
6
Error Indicators and Warnings
If on entry
or
, explanatory error messages are output on the current error message unit (as defined by
x04aaf).
Errors or warnings detected by the routine:
-
On entry, at least one value of
x was invalid.
Check
ivalid for more information.
-
On entry, .
Constraint: .
An unexpected error has been triggered by this routine. Please
contact
NAG.
See
Section 7 in the Introduction to the NAG Library FL Interface for further information.
Your licence key may have expired or may not have been installed correctly.
See
Section 8 in the Introduction to the NAG Library FL Interface for further information.
Dynamic memory allocation failed.
See
Section 9 in the Introduction to the NAG Library FL Interface for further information.
7
Accuracy
For negative arguments the function is oscillatory and hence absolute error is the appropriate measure. In the positive region the function is essentially exponential-like and here relative error is appropriate. The absolute error,
, and the relative error,
, are related in principle to the relative error in the argument,
, by
In practice, approximate equality is the best that can be expected. When
,
or
is of the order of the
machine precision, the errors in the result will be somewhat larger.
For small , errors are strongly damped by the function and hence will be bounded by the machine precision.
For moderate negative
, the error behaviour is oscillatory but the amplitude of the error grows like
However, the phase error will be growing roughly like
and hence all accuracy will be lost for large negative arguments due to the impossibility of calculating sin and cos to any accuracy if
.
For large positive arguments, the relative error amplification is considerable:
This means a loss of roughly two decimal places accuracy for arguments in the region of
. However, very large arguments are not possible due to the danger of setting underflow and so the errors are limited in practice.
8
Parallelism and Performance
s17auf is not threaded in any implementation.
None.
10
Example
This example reads values of
x from a file, evaluates the function at each value of
and prints the results.
10.1
Program Text
10.2
Program Data
10.3
Program Results