NAG FL Interface
g01kff (pdf_gamma)
1
Purpose
g01kff returns the value of the probability density function (PDF) for the gamma distribution with shape parameter and scale parameter at a point .
2
Specification
Fortran Interface
Real (Kind=nag_wp) |
:: |
g01kff |
Integer, Intent (Inout) |
:: |
ifail |
Real (Kind=nag_wp), Intent (In) |
:: |
x, a, b |
|
C Header Interface
#include <nag.h>
double |
g01kff_ (const double *x, const double *a, const double *b, Integer *ifail) |
|
C++ Header Interface
#include <nag.h> extern "C" {
double |
g01kff_ (const double &x, const double &a, const double &b, Integer &ifail) |
}
|
The routine may be called by the names g01kff or nagf_stat_pdf_gamma.
3
Description
The gamma distribution has PDF
If
then an algorithm based directly on the gamma distribution's PDF is used. For values outside this range, the function is calculated via the Poisson distribution's PDF as described in
Loader (2000) (see
Section 9).
4
References
Loader C (2000) Fast and accurate computation of binomial probabilities (not yet published)
5
Arguments
-
1:
– Real (Kind=nag_wp)
Input
-
On entry: , the value at which the PDF is to be evaluated.
-
2:
– Real (Kind=nag_wp)
Input
-
On entry: , the shape parameter of the gamma distribution.
Constraint:
.
-
3:
– Real (Kind=nag_wp)
Input
-
On entry: , the scale parameter of the gamma distribution.
-
4:
– Integer
Input/Output
-
On entry:
ifail must be set to
,
or
to set behaviour on detection of an error; these values have no effect when no error is detected.
A value of causes the printing of an error message and program execution will be halted; otherwise program execution continues. A value of means that an error message is printed while a value of means that it is not.
If halting is not appropriate, the value
or
is recommended. If message printing is undesirable, then the value
is recommended. Otherwise, the value
is recommended.
When the value or is used it is essential to test the value of ifail on exit.
On exit:
unless the routine detects an error or a warning has been flagged (see
Section 6).
6
Error Indicators and Warnings
If on entry
or
, explanatory error messages are output on the current error message unit (as defined by
x04aaf).
Errors or warnings detected by the routine:
If , then g01kff returns .
-
On entry, .
Constraint: .
-
On entry, .
Constraint: .
-
Computation abandoned owing to overflow due to extreme parameter values.
An unexpected error has been triggered by this routine. Please
contact
NAG.
See
Section 7 in the Introduction to the NAG Library FL Interface for further information.
Your licence key may have expired or may not have been installed correctly.
See
Section 8 in the Introduction to the NAG Library FL Interface for further information.
Dynamic memory allocation failed.
See
Section 9 in the Introduction to the NAG Library FL Interface for further information.
7
Accuracy
Not applicable.
8
Parallelism and Performance
g01kff is not threaded in any implementation.
Due to the lack of a stable link to
Loader (2000) paper, we give a brief overview of the method, as applied to the Poisson distribution. The Poisson distribution has a continuous mass function given by,
The usual way of computing this quantity would be to take the logarithm and calculate,
For large and , and are very large, of the same order of magnitude and when calculated have rounding errors. The subtraction of these two terms can therefore result in a number, many orders of magnitude smaller and hence we lose accuracy due to subtraction errors. For example for and , and . But calculated with the method shown later we have . The difference between these two results suggests a loss of about significant figures of precision.
Loader introduces an alternative way of expressing
(1) based on the saddle point expansion,
where
, the deviance for the Poisson distribution is given by,
and
For
close to
,
can be evaluated through the series expansion
otherwise
can be evaluated directly. In addition, Loader suggests evaluating
using the Stirling–De Moivre series,
where the error
is given by
Finally
can be evaluated by combining equations
(1)–
(4) to get,
10
Example
This example prints the value of the gamma distribution PDF at six different points
x with differing
a and
b.
10.1
Program Text
10.2
Program Data
10.3
Program Results