Routine |
Mark of Introduction |
Purpose |
---|---|---|
f06aaf | 12 | drotg nagf_blas_drotg Generate real plane rotation |
f06baf | 12 | nagf_blas_drotgc Generate real plane rotation, storing tangent |
f06bcf | 12 | nagf_blas_dcsg Recover cosine and sine from given real tangent |
f06bef | 12 | nagf_blas_drotj Generate real Jacobi plane rotation |
f06bhf | 12 | nagf_blas_drot2 Apply real similarity rotation to by symmetric matrix |
f06blf | 12 | nagf_blas_ddiv Compute quotient of two real scalars, with overflow flag |
f06bmf | 12 | nagf_blas_dnorm Compute Euclidean norm from scaled form |
f06bnf | 12 | nagf_blas_dpyth Compute square root of , real and |
f06bpf | 12 | nagf_blas_deig2 Compute eigenvalue of by real symmetric matrix |
f06caf | 12 | nagf_blas_zrotgc Generate complex plane rotation, storing tangent, real cosine |
f06cbf | 12 | nagf_blas_zrotgs Generate complex plane rotation, storing tangent, real sine |
f06ccf | 12 | nagf_blas_zcsg Recover cosine and sine from given complex tangent, real cosine |
f06cdf | 12 | nagf_blas_zcsgs Recover cosine and sine from given complex tangent, real sine |
f06chf | 12 | nagf_blas_zrot2 Apply complex similarity rotation to by Hermitian matrix |
f06clf | 12 | nagf_blas_zdiv Compute quotient of two complex scalars, with overflow flag |
f06dbf | 12 | nagf_blas_iload Broadcast scalar into integer vector |
f06dff | 12 | nagf_blas_icopy Copy integer vector |
f06eaf | 12 | ddot nagf_blas_ddot Dot product of two real vectors |
f06ecf | 12 | daxpy nagf_blas_daxpy Add scalar times real vector to real vector |
f06edf | 12 | dscal nagf_blas_dscal Multiply real vector by scalar |
f06eff | 12 | dcopy nagf_blas_dcopy Copy real vector |
f06egf | 12 | dswap nagf_blas_dswap Swap two real vectors |
f06ejf | 12 | dnrm2 nagf_blas_dnrm2 Compute Euclidean norm of real vector |
f06ekf | 12 | dasum nagf_blas_dasum Sum absolute values of real vector elements |
f06epf | 12 | drot nagf_blas_drot Apply real plane rotation |
f06erf | 14 | ddoti nagf_blas_ddoti Dot product of a real sparse and a full vector |
f06etf | 14 | daxpyi nagf_blas_daxpyi Add scalar times real sparse vector to a full vector |
f06euf | 14 | dgthr nagf_blas_dgthr Gather real sparse vector |
f06evf | 14 | dgthrz nagf_blas_dgthrz Gather and set to zero real sparse vector |
f06ewf | 14 | dsctr nagf_blas_dsctr Scatter real sparse vector |
f06exf | 14 | droti nagf_blas_droti Apply plane rotation to a real sparse and a full vector |
f06faf | 12 | nagf_blas_dvcos Compute cosine of angle between two real vectors |
f06fbf | 12 | nagf_blas_dload Broadcast scalar into real vector |
f06fcf | 12 | nagf_blas_ddscl Multiply real vector by diagonal matrix |
f06fdf | 12 | nagf_blas_axpzy Multiply real vector by scalar, preserving input vector |
f06fef | 21 | nagf_blas_drscl Multiply real vector by reciprocal of scalar |
f06fgf | 12 | nagf_blas_dnegv Negate real vector |
f06fjf | 12 | nagf_blas_dssq Update Euclidean norm of real vector in scaled form |
f06fkf | 12 | nagf_blas_dnrm2w Compute weighted Euclidean norm of real vector |
f06flf | 12 | nagf_blas_darang Elements of real vector with largest and smallest absolute value |
f06fpf | 12 | nagf_blas_drots Apply real symmetric plane rotation to two vectors |
f06fqf | 12 | nagf_blas_dsrotg Generate sequence of real plane rotations |
f06frf | 12 | nagf_blas_dnhousg Generate real elementary reflection, NAG style |
f06fsf | 12 | nagf_blas_dlhousg Generate real elementary reflection, LINPACK style |
f06ftf | 12 | nagf_blas_dnhous Apply real elementary reflection, NAG style |
f06fuf | 12 | nagf_blas_dlhous Apply real elementary reflection, LINPACK style |
f06gaf | 12 | zdotu nagf_blas_zdotu Dot product of two complex vectors, unconjugated |
f06gbf | 12 | zdotc nagf_blas_zdotc Dot product of two complex vectors, conjugated |
f06gcf | 12 | zaxpy nagf_blas_zaxpy Add scalar times complex vector to complex vector |
f06gdf | 12 | zscal nagf_blas_zscal Multiply complex vector by complex scalar |
f06gff | 12 | zcopy nagf_blas_zcopy Copy complex vector |
f06ggf | 12 | zswap nagf_blas_zswap Swap two complex vectors |
f06grf | 14 | zdotui nagf_blas_zdotui Dot product of a complex sparse and a full vector, unconjugated |
f06gsf | 14 | zdotci nagf_blas_zdotci Dot product of a complex sparse and a full vector, conjugated |
f06gtf | 14 | zaxpyi nagf_blas_zaxpyi Add scalar times complex sparse vector to a full vector |
f06guf | 14 | zgthr nagf_blas_zgthr Gather complex sparse vector |
f06gvf | 14 | zgthrz nagf_blas_zgthrz Gather and set to zero complex sparse vector |
f06gwf | 14 | zsctr nagf_blas_zsctr Scatter complex sparse vector |
f06hbf | 12 | nagf_blas_zload Broadcast scalar into complex vector |
f06hcf | 12 | nagf_blas_zdscl Multiply complex vector by complex diagonal matrix |
f06hdf | 12 | nagf_blas_zaxpzy Multiply complex vector by complex scalar, preserving input vector |
f06hgf | 12 | nagf_blas_znegv Negate complex vector |
f06hmf | 21 | zrot nagf_blas_zrot Apply plane rotation with real cosine and complex sine |
f06hpf | 12 | nagf_blas_zcrot Apply complex plane rotation |
f06hqf | 12 | nagf_blas_zsrotg Generate sequence of complex plane rotations |
f06hrf | 12 | nagf_blas_zhousg Generate complex elementary reflection |
f06htf | 12 | nagf_blas_zhous Apply complex elementary reflection |
f06jdf | 12 | zdscal nagf_blas_zdscal Multiply complex vector by real scalar |
f06jjf | 12 | dznrm2 nagf_blas_dznrm2 Compute Euclidean norm of complex vector |
f06jkf | 12 | dzasum nagf_blas_dzasum Sum absolute values of complex vector elements |
f06jlf | 12 | idamax nagf_blas_idamax Index, real vector element with largest absolute value |
f06jmf | 12 | izamax nagf_blas_izamax Index, complex vector element with largest absolute value |
f06kcf | 12 | nagf_blas_zddscl Multiply complex vector by real diagonal matrix |
f06kdf | 12 | nagf_blas_zdaxpzy Multiply complex vector by real scalar, preserving input vector |
f06kef | 21 | nagf_blas_zdrscl Multiply complex vector by reciprocal of real scalar |
f06kff | 12 | nagf_blas_zdcopy Copy real vector to complex vector |
f06kjf | 12 | nagf_blas_dzssq Update Euclidean norm of complex vector in scaled form |
f06klf | 12 | nagf_blas_idrank Last non-negligible element of real vector |
f06kpf | 12 | zdrot nagf_blas_zdrot Apply real plane rotation to two complex vectors |
f06paf | 12 | dgemv nagf_blas_dgemv Matrix-vector product, real rectangular matrix |
f06pbf | 12 | dgbmv nagf_blas_dgbmv Matrix-vector product, real rectangular band matrix |
f06pcf | 12 | dsymv nagf_blas_dsymv Matrix-vector product, real symmetric matrix |
f06pdf | 12 | dsbmv nagf_blas_dsbmv Matrix-vector product, real symmetric band matrix |
f06pef | 12 | dspmv nagf_blas_dspmv Matrix-vector product, real symmetric packed matrix |
f06pff | 12 | dtrmv nagf_blas_dtrmv Matrix-vector product, real triangular matrix |
f06pgf | 12 | dtbmv nagf_blas_dtbmv Matrix-vector product, real triangular band matrix |
f06phf | 12 | dtpmv nagf_blas_dtpmv Matrix-vector product, real triangular packed matrix |
f06pjf | 12 | dtrsv nagf_blas_dtrsv System of equations, real triangular matrix |
f06pkf | 12 | dtbsv nagf_blas_dtbsv System of equations, real triangular band matrix |
f06plf | 12 | dtpsv nagf_blas_dtpsv System of equations, real triangular packed matrix |
f06pmf | 12 | dger nagf_blas_dger Rank-1 update, real rectangular matrix |
f06ppf | 12 | dsyr nagf_blas_dsyr Rank-1 update, real symmetric matrix |
f06pqf | 12 | dspr nagf_blas_dspr Rank-1 update, real symmetric packed matrix |
f06prf | 12 | dsyr2 nagf_blas_dsyr2 Rank-2 update, real symmetric matrix |
f06psf | 12 | dspr2 nagf_blas_dspr2 Rank-2 update, real symmetric packed matrix |
f06qff | 13 | nagf_blas_dmcopy Matrix copy, real rectangular or trapezoidal matrix |
f06qhf | 13 | nagf_blas_dmload Matrix initialization, real rectangular matrix |
f06qjf | 13 | nagf_blas_dgeap Permute rows or columns, real rectangular matrix, permutations represented by an integer array |
f06qkf | 13 | nagf_blas_dgeapr Permute rows or columns, real rectangular matrix, permutations represented by a real array |
f06qmf | 13 | nagf_blas_dsysrc Orthogonal similarity transformation of real symmetric matrix as a sequence of plane rotations |
f06qpf | 13 | nagf_blas_dutr1 factorization by sequence of plane rotations, rank-1 update of real upper triangular matrix |
f06qqf | 13 | nagf_blas_dutupd factorization by sequence of plane rotations, real upper triangular matrix augmented by a full row |
f06qrf | 13 | nagf_blas_duhqr or factorization by sequence of plane rotations, real upper Hessenberg matrix |
f06qsf | 13 | nagf_blas_dusqr or factorization by sequence of plane rotations, real upper spiked matrix |
f06qtf | 13 | nagf_blas_dutsqr factorization of or factorization of , real upper triangular, a sequence of plane rotations |
f06qvf | 13 | nagf_blas_dutsrh Compute upper Hessenberg matrix by sequence of plane rotations, real upper triangular matrix |
f06qwf | 13 | nagf_blas_dutsrs Compute upper spiked matrix by sequence of plane rotations, real upper triangular matrix |
f06qxf | 13 | nagf_blas_dgesrc Apply sequence of plane rotations, real rectangular matrix |
f06raf | 15 | nagf_blas_dlange -norm, -norm, Frobenius norm, largest absolute element, real general matrix |
f06rbf | 15 | nagf_blas_dlangb -norm, -norm, Frobenius norm, largest absolute element, real band matrix |
f06rcf | 15 | nagf_blas_dlansy -norm, -norm, Frobenius norm, largest absolute element, real symmetric matrix |
f06rdf | 15 | nagf_blas_dlansp -norm, -norm, Frobenius norm, largest absolute element, real symmetric matrix, packed storage |
f06ref | 15 | nagf_blas_dlansb -norm, -norm, Frobenius norm, largest absolute element, real symmetric band matrix |
f06rjf | 15 | nagf_blas_dlantr -norm, -norm, Frobenius norm, largest absolute element, real trapezoidal/triangular matrix |
f06rkf | 15 | nagf_blas_dlantp -norm, -norm, Frobenius norm, largest absolute element, real triangular matrix, packed storage |
f06rlf | 15 | nagf_blas_dlantb -norm, -norm, Frobenius norm, largest absolute element, real triangular band matrix |
f06rmf | 15 | nagf_blas_dlanhs -norm, -norm, Frobenius norm, largest absolute element, real upper Hessenberg matrix |
f06rnf | 21 | nagf_blas_dlangt -norm, -norm, Frobenius norm, largest absolute element, real tridiagonal matrix |
f06rpf | 21 | nagf_blas_dlanst -norm, -norm, Frobenius norm, largest absolute element, real symmetric tridiagonal matrix |
f06saf | 12 | zgemv nagf_blas_zgemv Matrix-vector product, complex rectangular matrix |
f06sbf | 12 | zgbmv nagf_blas_zgbmv Matrix-vector product, complex rectangular band matrix |
f06scf | 12 | zhemv nagf_blas_zhemv Matrix-vector product, complex Hermitian matrix |
f06sdf | 12 | zhbmv nagf_blas_zhbmv Matrix-vector product, complex Hermitian band matrix |
f06sef | 12 | zhpmv nagf_blas_zhpmv Matrix-vector product, complex Hermitian packed matrix |
f06sff | 12 | ztrmv nagf_blas_ztrmv Matrix-vector product, complex triangular matrix |
f06sgf | 12 | ztbmv nagf_blas_ztbmv Matrix-vector product, complex triangular band matrix |
f06shf | 12 | ztpmv nagf_blas_ztpmv Matrix-vector product, complex triangular packed matrix |
f06sjf | 12 | ztrsv nagf_blas_ztrsv System of equations, complex triangular matrix |
f06skf | 12 | ztbsv nagf_blas_ztbsv System of equations, complex triangular band matrix |
f06slf | 12 | ztpsv nagf_blas_ztpsv System of equations, complex triangular packed matrix |
f06smf | 12 | zgeru nagf_blas_zgeru Rank-1 update, complex rectangular matrix, unconjugated vector |
f06snf | 12 | zgerc nagf_blas_zgerc Rank-1 update, complex rectangular matrix, conjugated vector |
f06spf | 12 | zher nagf_blas_zher Rank-1 update, complex Hermitian matrix |
f06sqf | 12 | zhpr nagf_blas_zhpr Rank-1 update, complex Hermitian packed matrix |
f06srf | 12 | zher2 nagf_blas_zher2 Rank-2 update, complex Hermitian matrix |
f06ssf | 12 | zhpr2 nagf_blas_zhpr2 Rank-2 update, complex Hermitian packed matrix |
f06taf | 21 | nagf_blas_zsymv Matrix-vector product, complex symmetric matrix |
f06tbf | 21 | nagf_blas_zsyr Rank-1 update, complex symmetric matrix |
f06tcf | 21 | nagf_blas_zspmv Matrix-vector product, complex symmetric packed matrix |
f06tdf | 21 | nagf_blas_zspr Rank-1 update, complex symmetric packed matrix |
f06tff | 13 | nagf_blas_zmcopy Matrix copy, complex rectangular or trapezoidal matrix |
f06thf | 13 | nagf_blas_zmload Matrix initialization, complex rectangular matrix |
f06tmf | 13 | nagf_blas_zhesrc Unitary similarity transformation of Hermitian matrix as a sequence of plane rotations |
f06tpf | 13 | nagf_blas_zutr1 factorization by sequence of plane rotations, rank-1 update of complex upper triangular matrix |
f06tqf | 13 | nagf_blas_zutupd factorization by sequence of plane rotations, complex upper triangular matrix augmented by a full row |
f06trf | 13 | nagf_blas_zuhqr or factorization by sequence of plane rotations, complex upper Hessenberg matrix |
f06tsf | 13 | nagf_blas_zusqr or factorization by sequence of plane rotations, complex upper spiked matrix |
f06ttf | 13 | nagf_blas_zutsqr factorization of or factorization of , complex upper triangular, a sequence of plane rotations |
f06tvf | 13 | nagf_blas_zutsrh Compute upper Hessenberg matrix by sequence of plane rotations, complex upper triangular matrix |
f06twf | 13 | nagf_blas_zutsrs Compute upper spiked matrix by sequence of plane rotations, complex upper triangular matrix |
f06txf | 13 | nagf_blas_zgesrc Apply sequence of plane rotations, complex rectangular matrix, real cosine and complex sine |
f06tyf | 13 | nagf_blas_zgesrs Apply sequence of plane rotations, complex rectangular matrix, complex cosine and real sine |
f06uaf | 15 | nagf_blas_zlange -norm, -norm, Frobenius norm, largest absolute element, complex general matrix |
f06ubf | 15 | nagf_blas_zlangb -norm, -norm, Frobenius norm, largest absolute element, complex band matrix |
f06ucf | 15 | nagf_blas_zlanhe -norm, -norm, Frobenius norm, largest absolute element, complex Hermitian matrix |
f06udf | 15 | nagf_blas_zlanhp -norm, -norm, Frobenius norm, largest absolute element, complex Hermitian matrix, packed storage |
f06uef | 15 | nagf_blas_zlanhb -norm, -norm, Frobenius norm, largest absolute element, complex Hermitian band matrix |
f06uff | 15 | nagf_blas_zlansy -norm, -norm, Frobenius norm, largest absolute element, complex symmetric matrix |
f06ugf | 15 | nagf_blas_zlansp -norm, -norm, Frobenius norm, largest absolute element, complex symmetric matrix, packed storage |
f06uhf | 15 | nagf_blas_zlansb -norm, -norm, Frobenius norm, largest absolute element, complex symmetric band matrix |
f06ujf | 15 | nagf_blas_zlantr -norm, -norm, Frobenius norm, largest absolute element, complex trapezoidal/triangular matrix |
f06ukf | 15 | nagf_blas_zlantp -norm, -norm, Frobenius norm, largest absolute element, complex triangular matrix, packed storage |
f06ulf | 15 | nagf_blas_zlantb -norm, -norm, Frobenius norm, largest absolute element, complex triangular band matrix |
f06umf | 15 | nagf_blas_zlanhs -norm, -norm, Frobenius norm, largest absolute element, complex Hessenberg matrix |
f06unf | 21 | nagf_blas_zlangt -norm, -norm, Frobenius norm, largest absolute element, complex tridiagonal matrix |
f06upf | 21 | nagf_blas_zlanht -norm, -norm, Frobenius norm, largest absolute element, complex Hermitian tridiagonal matrix |
f06vjf | 13 | nagf_blas_zgeap Permute rows or columns, complex rectangular matrix, permutations represented by an integer array |
f06vkf | 13 | nagf_blas_zgeapr Permute rows or columns, complex rectangular matrix, permutations represented by a real array |
f06vxf | 13 | nagf_blas_zsgesr Apply sequence of plane rotations, complex rectangular matrix, real cosine and sine |
f06waf
Example Text Example Data |
23 | dlansf nagf_blas_dlansf 1-norm, -norm, Frobenius norm, largest absolute element, real symmetric matrix, Rectangular Full Packed format |
f06wbf
Example Text Example Data |
23 | dtfsm nagf_blas_dtfsm Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix, Rectangular Full Packed format |
f06wcf
Example Text Example Data |
23 | dsfrk nagf_blas_dsfrk Rank- update of a real symmetric matrix, Rectangular Full Packed format |
f06wnf
Example Text Example Data |
23 | zlanhf nagf_blas_zlanhf 1-norm, -norm, Frobenius norm, largest absolute element, complex Hermitian matrix, Rectangular Full Packed format |
f06wpf
Example Text Example Data |
23 | ztfsm nagf_blas_ztfsm Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix, Rectangular Full Packed format |
f06wqf
Example Text Example Data |
23 | zhfrk nagf_blas_zhfrk Rank- update of a complex Hermitian matrix, Rectangular Full Packed format |
f06yaf | 14 | dgemm nagf_blas_dgemm Matrix-matrix product, two real rectangular matrices |
f06ycf | 14 | dsymm nagf_blas_dsymm Matrix-matrix product, one real symmetric matrix, one real rectangular matrix |
f06yff | 14 | dtrmm nagf_blas_dtrmm Matrix-matrix product, one real triangular matrix, one real rectangular matrix |
f06yjf | 14 | dtrsm nagf_blas_dtrsm Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix |
f06ypf | 14 | dsyrk nagf_blas_dsyrk Rank- update of a real symmetric matrix |
f06yrf | 14 | dsyr2k nagf_blas_dsyr2k Rank- update of a real symmetric matrix |
f06zaf | 14 | zgemm nagf_blas_zgemm Matrix-matrix product, two complex rectangular matrices |
f06zcf | 14 | zhemm nagf_blas_zhemm Matrix-matrix product, one complex Hermitian matrix, one complex rectangular matrix |
f06zff | 14 | ztrmm nagf_blas_ztrmm Matrix-matrix product, one complex triangular matrix, one complex rectangular matrix |
f06zjf | 14 | ztrsm nagf_blas_ztrsm Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix |
f06zpf | 14 | zherk nagf_blas_zherk Rank- update of a complex Hermitian matrix |
f06zrf | 14 | zher2k nagf_blas_zher2k Rank- update of a complex Hermitian matrix |
f06ztf | 14 | zsymm nagf_blas_zsymm Matrix-matrix product, one complex symmetric matrix, one complex rectangular matrix |
f06zuf | 14 | zsyrk nagf_blas_zsyrk Rank- update of a complex symmetric matrix |
f06zwf | 14 | zsyr2k nagf_blas_zsyr2k Rank- update of a complex symmetric matrix |