NAG FL Interface
c06ref (fft_sine)
1
Purpose
c06ref computes the discrete Fourier sine transforms of sequences of real data values. The elements of each sequence and its transform are stored contiguously.
2
Specification
Fortran Interface
Integer, Intent (In) |
:: |
m, n |
Integer, Intent (Inout) |
:: |
ifail |
Real (Kind=nag_wp), Intent (Inout) |
:: |
x(n-1,m) |
|
C Header Interface
#include <nag.h>
void |
c06ref_ (const Integer *m, const Integer *n, double x[], Integer *ifail) |
|
C++ Header Interface
#include <nag.h> extern "C" {
void |
c06ref_ (const Integer &m, const Integer &n, double x[], Integer &ifail) |
}
|
The routine may be called by the names c06ref or nagf_sum_fft_sine.
3
Description
Given
sequences of
real data values
, for
and
,
c06ref simultaneously calculates the Fourier sine transforms of all the sequences defined by
(Note the scale factor in this definition.)
This transform is also known as type-I DST.
Since the Fourier sine transform defined above is its own inverse, two consecutive calls of c06ref will restore the original data.
The transform calculated by this routine can be used to solve Poisson's equation when the solution is specified at both left and right boundaries (see
Swarztrauber (1977)).
The routine uses a variant of the fast Fourier transform (FFT) algorithm (see
Brigham (1974)) known as the Stockham self-sorting algorithm, described in
Temperton (1983), together with pre- and post-processing stages described in
Swarztrauber (1982). Special coding is provided for the factors
,
,
and
.
4
References
Brigham E O (1974) The Fast Fourier Transform Prentice–Hall
Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19(3) 490–501
Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) 51–83 Academic Press
Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350
5
Arguments
-
1:
– Integer
Input
-
On entry: , the number of sequences to be transformed.
Constraint:
.
-
2:
– Integer
Input
-
On entry: one more than the number of real values in each sequence, i.e., the number of values in each sequence is .
Constraint:
.
-
3:
– Real (Kind=nag_wp) array
Input/Output
-
Note: the second dimension of the array
x
must be at least
.
On entry: the data values of the th sequence to be transformed, denoted by
, for and , must be stored in .
On exit: the components of the th Fourier sine transform, denoted by
, for and , are stored in , overwriting the corresponding original values.
-
4:
– Integer
Input/Output
-
On entry:
ifail must be set to
,
or
to set behaviour on detection of an error; these values have no effect when no error is detected.
A value of causes the printing of an error message and program execution will be halted; otherwise program execution continues. A value of means that an error message is printed while a value of means that it is not.
If halting is not appropriate, the value
or
is recommended. If message printing is undesirable, then the value
is recommended. Otherwise, the value
is recommended.
When the value or is used it is essential to test the value of ifail on exit.
On exit:
unless the routine detects an error or a warning has been flagged (see
Section 6).
6
Error Indicators and Warnings
If on entry
or
, explanatory error messages are output on the current error message unit (as defined by
x04aaf).
Errors or warnings detected by the routine:
-
On entry, .
Constraint: .
-
On entry, .
Constraint: .
-
An internal error has occurred in this routine.
Check the routine call and any array sizes.
If the call is correct then please contact
NAG for assistance.
An unexpected error has been triggered by this routine. Please
contact
NAG.
See
Section 7 in the Introduction to the NAG Library FL Interface for further information.
Your licence key may have expired or may not have been installed correctly.
See
Section 8 in the Introduction to the NAG Library FL Interface for further information.
Dynamic memory allocation failed.
See
Section 9 in the Introduction to the NAG Library FL Interface for further information.
7
Accuracy
Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).
8
Parallelism and Performance
c06ref is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
Please consult the
X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the
Users' Note for your implementation for any additional implementation-specific information.
The time taken by c06ref is approximately proportional to , but also depends on the factors of . c06ref is fastest if the only prime factors of are , and , and is particularly slow if is a large prime, or has large prime factors. Workspace of order is internally allocated by this routine.
10
Example
This example reads in sequences of real data values and prints their Fourier sine transforms (as computed by c06ref). It then calls c06ref again and prints the results which may be compared with the original sequence.
10.1
Program Text
10.2
Program Data
10.3
Program Results