NAG CL Interface
f08wnc (zggev)
1
Purpose
f08wnc computes for a pair of
by
complex nonsymmetric matrices
the generalized eigenvalues and, optionally, the left and/or right generalized eigenvectors using the
algorithm.
f08wnc is marked as
deprecated by LAPACK; the replacement routine is
f08wqc which makes better use of Level 3 BLAS.
2
Specification
void |
f08wnc (Nag_OrderType order,
Nag_LeftVecsType jobvl,
Nag_RightVecsType jobvr,
Integer n,
Complex a[],
Integer pda,
Complex b[],
Integer pdb,
Complex alpha[],
Complex beta[],
Complex vl[],
Integer pdvl,
Complex vr[],
Integer pdvr,
NagError *fail) |
|
The function may be called by the names: f08wnc, nag_lapackeig_zggev or nag_zggev.
3
Description
A generalized eigenvalue for a pair of matrices is a scalar or a ratio , such that is singular. It is usually represented as the pair , as there is a reasonable interpretation for , and even for both being zero.
The right generalized eigenvector
corresponding to the generalized eigenvalue
of
satisfies
The left generalized eigenvector
corresponding to the generalized eigenvalue
of
satisfies
where
is the conjugate-transpose of
.
All the eigenvalues and, if required, all the eigenvectors of the complex generalized eigenproblem
, where
and
are complex, square matrices, are determined using the
algorithm. The complex
algorithm consists of three stages:
-
1. is reduced to upper Hessenberg form (with real, non-negative subdiagonal elements) and at the same time is reduced to upper triangular form.
-
2. is further reduced to triangular form while the triangular form of is maintained and the diagonal elements of are made real and non-negative. This is the generalized Schur form of the pair .
This function does not actually produce the eigenvalues
, but instead returns
and
such that
The division by
becomes your responsibility, since
may be zero, indicating an infinite eigenvalue.
-
3.If the eigenvectors are required they are obtained from the triangular matrices and then transformed back into the original coordinate system.
4
References
Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999)
LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia
https://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore
Wilkinson J H (1979) Kronecker's canonical form and the algorithm Linear Algebra Appl. 28 285–303
5
Arguments
-
1:
– Nag_OrderType
Input
-
On entry: the
order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by
. See
Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint:
or .
-
2:
– Nag_LeftVecsType
Input
-
On entry: if
, do not compute the left generalized eigenvectors.
If , compute the left generalized eigenvectors.
Constraint:
or .
-
3:
– Nag_RightVecsType
Input
-
On entry: if
, do not compute the right generalized eigenvectors.
If , compute the right generalized eigenvectors.
Constraint:
or .
-
4:
– Integer
Input
-
On entry: , the order of the matrices and .
Constraint:
.
-
5:
– Complex
Input/Output
-
Note: the dimension,
dim, of the array
a
must be at least
.
The
th element of the matrix
is stored in
- when ;
- when .
On entry: the matrix in the pair .
On exit:
a has been overwritten.
-
6:
– Integer
Input
-
On entry: the stride separating row or column elements (depending on the value of
order) in the array
a.
Constraint:
.
-
7:
– Complex
Input/Output
-
Note: the dimension,
dim, of the array
b
must be at least
.
The
th element of the matrix
is stored in
- when ;
- when .
On entry: the matrix in the pair .
On exit:
b has been overwritten.
-
8:
– Integer
Input
-
On entry: the stride separating row or column elements (depending on the value of
order) in the array
b.
Constraint:
.
-
9:
– Complex
Output
-
On exit: see the description of
beta.
-
10:
– Complex
Output
-
On exit:
, for
, will be the generalized eigenvalues.
Note: the quotients may easily overflow or underflow, and may even be zero. Thus, you should avoid naively computing the ratio . However, will always be less than and usually comparable with in magnitude, and will always be less than and usually comparable with .
-
11:
– Complex
Output
-
Note: the dimension,
dim, of the array
vl
must be at least
- when
;
- otherwise.
th element of the
th vector is stored in
- when ;
- when .
On exit: if
, the left generalized eigenvectors
are stored one after another in the columns of
vl, in the same order as the corresponding eigenvalues. Each eigenvector will be scaled so the largest component will have
.
If
,
vl is not referenced.
-
12:
– Integer
Input
-
On entry: the stride used in the array
vl.
Constraints:
- if , ;
- otherwise .
-
13:
– Complex
Output
-
Note: the dimension,
dim, of the array
vr
must be at least
- when
;
- otherwise.
th element of the
th vector is stored in
- when ;
- when .
On exit: if
, the right generalized eigenvectors
are stored one after another in the columns of
vr, in the same order as the corresponding eigenvalues. Each eigenvector will be scaled so the largest component will have
.
If
,
vr is not referenced.
-
14:
– Integer
Input
-
On entry: the stride used in the array
vr.
Constraints:
- if , ;
- otherwise .
-
15:
– NagError *
Input/Output
-
The NAG error argument (see
Section 7 in the Introduction to the NAG Library CL Interface).
6
Error Indicators and Warnings
- NE_ALLOC_FAIL
-
Dynamic memory allocation failed.
See
Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
- NE_BAD_PARAM
-
On entry, argument had an illegal value.
- NE_EIGENVECTORS
-
A failure occurred in
f08yxc while computing generalized eigenvectors.
- NE_ENUM_INT_2
-
On entry, , and .
Constraint: if , ;
otherwise .
On entry, , and .
Constraint: if , ;
otherwise .
- NE_INT
-
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
- NE_INT_2
-
On entry, and .
Constraint: .
On entry, and .
Constraint: .
- NE_INTERNAL_ERROR
-
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact
NAG for assistance.
See
Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
- NE_ITERATION_QZ
-
The
iteration failed. No eigenvectors have been calculated but
alpha and
beta should be correct from element
.
The
iteration failed with an unexpected error, please contact
NAG.
- NE_NO_LICENCE
-
Your licence key may have expired or may not have been installed correctly.
See
Section 8 in the Introduction to the NAG Library CL Interface for further information.
7
Accuracy
The computed eigenvalues and eigenvectors are exact for nearby matrices
and
, where
and
is the
machine precision. See Section 4.11 of
Anderson et al. (1999) for further details.
Note: interpretation of results obtained with the
algorithm often requires a clear understanding of the effects of small changes in the original data. These effects are reviewed in
Wilkinson (1979), in relation to the significance of small values of
and
. It should be noted that if
and
are
both small for any
, it may be that no reliance can be placed on
any of the computed eigenvalues
. You are recommended to study
Wilkinson (1979) and, if in difficulty, to seek expert advice on determining the sensitivity of the eigenvalues to perturbations in the data.
8
Parallelism and Performance
f08wnc is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f08wnc makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the
X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the
Users' Note for your implementation for any additional implementation-specific information.
The total number of floating-point operations is proportional to .
The real analogue of this function is
f08wac.
10
Example
This example finds all the eigenvalues and right eigenvectors of the matrix pair
,
where
and
10.1
Program Text
10.2
Program Data
10.3
Program Results