NAG CL Interface
f07tuc (ztrcon)

1 Purpose

f07tuc estimates the condition number of a complex triangular matrix.

2 Specification

#include <nag.h>
void  f07tuc (Nag_OrderType order, Nag_NormType norm, Nag_UploType uplo, Nag_DiagType diag, Integer n, const Complex a[], Integer pda, double *rcond, NagError *fail)
The function may be called by the names: f07tuc, nag_lapacklin_ztrcon or nag_ztrcon.

3 Description

f07tuc estimates the condition number of a complex triangular matrix A, in either the 1-norm or the -norm:
κ1 A = A1 A-11   or   κ A = A A-1 .  
Note that κA=κ1AT.
Because the condition number is infinite if A is singular, the function actually returns an estimate of the reciprocal of the condition number.
The function computes A1 or A exactly, and uses Higham's implementation of Hager's method (see Higham (1988)) to estimate A-11 or A-1.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Arguments

1: order Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2: norm Nag_NormType Input
On entry: indicates whether κ1A or κA is estimated.
norm=Nag_OneNorm
κ1A is estimated.
norm=Nag_InfNorm
κA is estimated.
Constraint: norm=Nag_OneNorm or Nag_InfNorm.
3: uplo Nag_UploType Input
On entry: specifies whether A is upper or lower triangular.
uplo=Nag_Upper
A is upper triangular.
uplo=Nag_Lower
A is lower triangular.
Constraint: uplo=Nag_Upper or Nag_Lower.
4: diag Nag_DiagType Input
On entry: indicates whether A is a nonunit or unit triangular matrix.
diag=Nag_NonUnitDiag
A is a nonunit triangular matrix.
diag=Nag_UnitDiag
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to be 1.
Constraint: diag=Nag_NonUnitDiag or Nag_UnitDiag.
5: n Integer Input
On entry: n, the order of the matrix A.
Constraint: n0.
6: a[dim] const Complex Input
Note: the dimension, dim, of the array a must be at least max1,pda×n.
On entry: the n by n triangular matrix A.
If order=Nag_ColMajor, Aij is stored in a[j-1×pda+i-1].
If order=Nag_RowMajor, Aij is stored in a[i-1×pda+j-1].
If uplo=Nag_Upper, the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.
If uplo=Nag_Lower, the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.
If diag=Nag_UnitDiag, the diagonal elements of A are assumed to be 1, and are not referenced.
7: pda Integer Input
On entry: the stride separating row or column elements (depending on the value of order) of the matrix A in the array a.
Constraint: pdamax1,n.
8: rcond double * Output
On exit: an estimate of the reciprocal of the condition number of A. rcond is set to zero if exact singularity is detected or the estimate underflows. If rcond is less than machine precision, A is singular to working precision.
9: fail NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, n=value.
Constraint: n0.
On entry, pda=value.
Constraint: pda>0.
NE_INT_2
On entry, pda=value and n=value.
Constraint: pdamax1,n.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

7 Accuracy

The computed estimate rcond is never less than the true value ρ, and in practice is nearly always less than 10ρ, although examples can be constructed where rcond is much larger.

8 Parallelism and Performance

f07tuc makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

A call to f07tuc involves solving a number of systems of linear equations of the form Ax=b or AHx=b; the number is usually 5 and never more than 11. Each solution involves approximately 4n2 real floating-point operations but takes considerably longer than a call to f07tsc with one right-hand side, because extra care is taken to avoid overflow when A is approximately singular.
The real analogue of this function is f07tgc.

10 Example

This example estimates the condition number in the 1-norm of the matrix A, where
A= 4.78+4.56i 0.00+0.00i 0.00+0.00i 0.00+0.00i 2.00-0.30i -4.11+1.25i 0.00+0.00i 0.00+0.00i 2.89-1.34i 2.36-4.25i 4.15+0.80i 0.00+0.00i -1.89+1.15i 0.04-3.69i -0.02+0.46i 0.33-0.26i .  
The true condition number in the 1-norm is 70.27.

10.1 Program Text

Program Text (f07tuce.c)

10.2 Program Data

Program Data (f07tuce.d)

10.3 Program Results

Program Results (f07tuce.r)