NAG FL Interface
s15auf (erfcx_​real_​vector)

1 Purpose

s15auf returns an array of values of the scaled complementary error function erfcxx.

2 Specification

Fortran Interface
Subroutine s15auf ( n, x, f, ivalid, ifail)
Integer, Intent (In) :: n
Integer, Intent (Inout) :: ifail
Integer, Intent (Out) :: ivalid(n)
Real (Kind=nag_wp), Intent (In) :: x(n)
Real (Kind=nag_wp), Intent (Out) :: f(n)
C Header Interface
#include <nag.h>
void  s15auf_ (const Integer *n, const double x[], double f[], Integer ivalid[], Integer *ifail)
The routine may be called by the names s15auf or nagf_specfun_erfcx_real_vector.

3 Description

s15auf calculates approximate values for the scaled complementary error function
erfcxx = e x2 erfcx = 2 π e x2 x e -t2 dt = e x2 1- erfx ,  
for an array of arguments xi, for i=1,2,,n.
Let x^ be the root of the equation erfcx-erfx=0 (then x^0.46875). For xx^ the value of erfcxx is based on the following rational Chebyshev expansion for erfx:
erfx xR,m x2 ,  
where R,m denotes a rational function of degree in the numerator and m in the denominator.
For x>x^ the value of erfcxx is based on a rational Chebyshev expansion for erfcx: for x^<x4 the value is based on the expansion
erfcx ex2 R,m x ;  
and for x>4 it is based on the expansion
erfcx ex2x 1π + 1x2 R,m 1/x2 .  
For each expansion, the specific values of and m are selected to be minimal such that the maximum relative error in the expansion is of the order 10-d, where d is the maximum number of decimal digits that can be accurately represented for the particular implementation (see x02bef).
Asymptotically, erfcxx1/πx. There is a danger of setting underflow in erfcxx whenever xxhi=minxhuge,1/πxtiny, where xhuge is the largest positive model number (see x02alf) and xtiny is the smallest positive model number (see x02akf). In this case s15auf exits with ifail=1 and returns ivalidi=1 with erfcxxi=0. For x in the range 1/2εx<xhi, where ε is the machine precision, the asymptotic value 1/πx is returned for erfcxxi, ivalidi=2, and s15auf exits with ifail=1.
There is a danger of setting overflow in ex2 whenever x<xneg=-logxhuge/2. In this case s15auf exits with ifail=1 and returns ivalidi=3 with erfcxxi=xhuge.
The values of xhi, 1/2ε and xneg are given in the Users' Note for your implementation.

4 References

NIST Digital Library of Mathematical Functions
Cody W J (1969) Rational Chebyshev approximations for the error function Math.Comp. 23 631–637

5 Arguments

1: n Integer Input
On entry: n, the number of points.
Constraint: n0.
2: xn Real (Kind=nag_wp) array Input
On entry: the argument xi of the function, for i=1,2,,n.
3: fn Real (Kind=nag_wp) array Output
On exit: erfcxxi, the function values.
4: ivalidn Integer array Output
On exit: ivalidi contains the error code for xi, for i=1,2,,n.
ivalidi=0
No error.
ivalidi=1
xi is too large and positive. The threshold value is the same as for ifail=1 in s15agf, as defined in the Users' Note for your implementation.
ivalidi=2
xi was in the interval 1/2ε,xhi. The threshold values are the same as for ifail=2 in s15agf, as defined in the Users' Note for your implementation.
ivalidi=3
xi is too small and positive. The threshold value is the same as for ifail=3 in s15agf, as defined in the Users' Note for your implementation.
5: ifail Integer Input/Output
On entry: ifail must be set to 0, -1 or 1. If you are unfamiliar with this argument you should refer to Section 4 in the Introduction to the NAG Library FL Interface for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of ifail on exit.
On exit: ifail=0 unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry ifail=0 or -1, explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
ifail=1
On entry, at least one value of x produced a result with reduced accuracy.
Check ivalid for more information.
ifail=2
On entry, n=value.
Constraint: n0.
ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 7 in the Introduction to the NAG Library FL Interface for further information.
ifail=-399
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library FL Interface for further information.
ifail=-999
Dynamic memory allocation failed.
See Section 9 in the Introduction to the NAG Library FL Interface for further information.

7 Accuracy

The relative error in computing erfcxx may be estimated by evaluating
E= erfcxx - ex2 n=1 Inerfcx erfcxx ,  
where In denotes repeated integration. Empirical results suggest that on the interval x^,2 the loss in base b significant digits for maximum relative error is around 3.3, while for root-mean-square relative error on that interval it is 1.2 (see x02bhf for the definition of the model parameter b). On the interval 2,20 the values are around 3.5 for maximum and 0.45 for root-mean-square relative errors; note that on these two intervals erfcx is the primary computation. See also Section 7 in s15adf.

8 Parallelism and Performance

s15auf is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of xi and prints the results.

10.1 Program Text

Program Text (s15aufe.f90)

10.2 Program Data

Program Data (s15aufe.d)

10.3 Program Results

Program Results (s15aufe.r)