NAG FL Interface
f06yrf (dsyr2k)

1 Purpose

f06yrf performs one of the symmetric rank-2k update operations
CαABT + αBAT + βC   or   CαATB + αBTA+βC ,  
where A and B are real matrices, C is an n by n real symmetric matrix, and α and β are real scalars.

2 Specification

Fortran Interface
Subroutine f06yrf ( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
Integer, Intent (In) :: n, k, lda, ldb, ldc
Real (Kind=nag_wp), Intent (In) :: alpha, a(lda,*), b(ldb,*), beta
Real (Kind=nag_wp), Intent (Inout) :: c(ldc,*)
Character (1), Intent (In) :: uplo, trans
C Header Interface
#include <nag.h>
void  f06yrf_ (const char *uplo, const char *trans, const Integer *n, const Integer *k, const double *alpha, const double a[], const Integer *lda, const double b[], const Integer *ldb, const double *beta, double c[], const Integer *ldc, const Charlen length_uplo, const Charlen length_trans)
The routine may be called by the names f06yrf, nagf_blas_dsyr2k or its BLAS name dsyr2k.

3 Description

None.

4 References

None.

5 Arguments

1: uplo Character(1) Input
On entry: specifies whether the upper or lower triangular part of C is stored.
uplo='U'
The upper triangular part of C is stored.
uplo='L'
The lower triangular part of C is stored.
Constraint: uplo='U' or 'L'.
2: trans Character(1) Input
On entry: specifies the operation to be performed.
trans='N'
CαABT+αBAT+βC.
trans='T' or 'C'
CαATB+αBTA+βC.
Constraint: trans='N', 'T' or 'C'.
3: n Integer Input
On entry: n, the order of the matrix C; the number of rows of A and B if trans='N', or the number of columns of A and B if trans='T' or 'C'.
Constraint: n0.
4: k Integer Input
On entry: k, the number of columns of A and B if trans='N', or the number of rows of A and B if trans='T' or 'C'.
Constraint: k0.
5: alpha Real (Kind=nag_wp) Input
On entry: the scalar α.
6: alda* Real (Kind=nag_wp) array Input
Note: the second dimension of the array a must be at least max1,k if trans='N' and at least max1,n if trans='T' or 'C'.
On entry: the matrix A; A is n by k if trans='N', or k by n if trans='T' or 'C'.
7: lda Integer Input
On entry: the first dimension of the array a as declared in the (sub)program from which f06yrf is called.
Constraints:
  • if trans='N', lda max1,n ;
  • if trans='T' or 'C', lda max1,k .
8: bldb* Real (Kind=nag_wp) array Input
Note: the second dimension of the array b must be at least max1,k if trans='N' and at least max1,n if trans='T' or 'C'.
On entry: the matrix B; B is n by k if trans='N', or k by n if trans='T' or 'C'.
9: ldb Integer Input
On entry: the first dimension of the array b as declared in the (sub)program from which f06yrf is called.
Constraints:
  • if trans='N', ldb max1,n ;
  • if trans='T' or 'C', ldb max1,k .
10: beta Real (Kind=nag_wp) Input
On entry: the scalar β.
11: cldc* Real (Kind=nag_wp) array Input/Output
Note: the second dimension of the array c must be at least max1,n.
On entry: the n by n symmetric matrix C.
  • If uplo='U', the upper triangular part of C must be stored and the elements of the array below the diagonal are not referenced.
  • If uplo='L', the lower triangular part of C must be stored and the elements of the array above the diagonal are not referenced.
On exit: the updated matrix C.
12: ldc Integer Input
On entry: the first dimension of the array c as declared in the (sub)program from which f06yrf is called.
Constraint: ldcmax1,n .

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

f06yrf is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f06yrf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

None.