NAG FL Interface
f04bgf (real_posdef_tridiag_solve)
1
Purpose
f04bgf computes the solution to a real system of linear equations , where is an by symmetric positive definite tridiagonal matrix and and are by matrices. An estimate of the condition number of and an error bound for the computed solution are also returned.
2
Specification
Fortran Interface
Integer, Intent (In) |
:: |
n, nrhs, ldb |
Integer, Intent (Inout) |
:: |
ifail |
Real (Kind=nag_wp), Intent (Inout) |
:: |
d(*), e(*), b(ldb,*) |
Real (Kind=nag_wp), Intent (Out) |
:: |
rcond, errbnd |
|
C Header Interface
#include <nag.h>
void |
f04bgf_ (const Integer *n, const Integer *nrhs, double d[], double e[], double b[], const Integer *ldb, double *rcond, double *errbnd, Integer *ifail) |
|
C++ Header Interface
#include <nag.h> extern "C" {
void |
f04bgf_ (const Integer &n, const Integer &nrhs, double d[], double e[], double b[], const Integer &ldb, double &rcond, double &errbnd, Integer &ifail) |
}
|
The routine may be called by the names f04bgf or nagf_linsys_real_posdef_tridiag_solve.
3
Description
is factorized as , where is a unit lower bidiagonal matrix and is diagonal, and the factored form of is then used to solve the system of equations.
4
References
Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999)
LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia
https://www.netlib.org/lapack/lug
Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia
5
Arguments
-
1:
– Integer
Input
-
On entry: the number of linear equations , i.e., the order of the matrix .
Constraint:
.
-
2:
– Integer
Input
-
On entry: the number of right-hand sides , i.e., the number of columns of the matrix .
Constraint:
.
-
3:
– Real (Kind=nag_wp) array
Input/Output
-
Note: the dimension of the array
d
must be at least
.
On entry: must contain the diagonal elements of the tridiagonal matrix .
On exit: if
or
,
d is overwritten by the
diagonal elements of the diagonal matrix
from the
factorization of
.
-
4:
– Real (Kind=nag_wp) array
Input/Output
-
Note: the dimension of the array
e
must be at least
.
On entry: must contain the subdiagonal elements of the tridiagonal matrix .
On exit: if
or
,
e is overwritten by the
subdiagonal elements of the unit lower bidiagonal matrix
from the
factorization of
. (
e can also be regarded as the superdiagonal of the unit upper bidiagonal factor
from the
factorization of
.)
-
5:
– Real (Kind=nag_wp) array
Input/Output
-
Note: the second dimension of the array
b
must be at least
.
On entry: the by matrix of right-hand sides .
On exit: if or , the by solution matrix .
-
6:
– Integer
Input
-
On entry: the first dimension of the array
b as declared in the (sub)program from which
f04bgf is called.
Constraint:
.
-
7:
– Real (Kind=nag_wp)
Output
-
On exit: if or , an estimate of the reciprocal of the condition number of the matrix , computed as .
-
8:
– Real (Kind=nag_wp)
Output
-
On exit: if
or
, an estimate of the forward error bound for a computed solution
, such that
, where
is a column of the computed solution returned in the array
b and
is the corresponding column of the exact solution
. If
rcond is less than
machine precision,
errbnd is returned as unity.
-
9:
– Integer
Input/Output
-
On entry:
ifail must be set to
,
. If you are unfamiliar with this argument you should refer to
Section 4 in the Introduction to the NAG Library FL Interface for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value
is recommended. If the output of error messages is undesirable, then the value
is recommended. Otherwise, if you are not familiar with this argument, the recommended value is
.
When the value is used it is essential to test the value of ifail on exit.
On exit:
unless the routine detects an error or a warning has been flagged (see
Section 6).
6
Error Indicators and Warnings
If on entry
or
, explanatory error messages are output on the current error message unit (as defined by
x04aaf).
Errors or warnings detected by the routine:
-
The principal minor of order of the matrix is not positive definite. The factorization has not been completed and the solution could not be computed.
-
A solution has been computed, but
rcond is less than
machine precision so that the matrix
is numerically singular.
-
On entry, .
Constraint: .
-
On entry, .
Constraint: .
-
On entry, and .
Constraint: .
An unexpected error has been triggered by this routine. Please
contact
NAG.
See
Section 7 in the Introduction to the NAG Library FL Interface for further information.
Your licence key may have expired or may not have been installed correctly.
See
Section 8 in the Introduction to the NAG Library FL Interface for further information.
Dynamic memory allocation failed.
The real allocatable memory required is
n. In this case the factorization and the solution
have been computed, but
rcond and
errbnd have not been computed.
See
Section 9 in the Introduction to the NAG Library FL Interface for further information.
7
Accuracy
The computed solution for a single right-hand side,
, satisfies an equation of the form
where
and
is the
machine precision. An approximate error bound for the computed solution is given by
where
, the condition number of
with respect to the solution of the linear equations.
f04bgf uses the approximation
to estimate
errbnd. See Section 4.4 of
Anderson et al. (1999)
for further details.
8
Parallelism and Performance
f04bgf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the
X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the
Users' Note for your implementation for any additional implementation-specific information.
The total number of floating-point operations required to solve the equations is proportional to . The condition number estimation requires floating-point operations.
See Section 15.3 of
Higham (2002) for further details on computing the condition number of tridiagonal matrices.
The complex analogue of
f04bgf is
f04cgf.
10
Example
This example solves the equations
where
is the symmetric positive definite tridiagonal matrix
An estimate of the condition number of and an approximate error bound for the computed solutions are also printed.
10.1
Program Text
10.2
Program Data
10.3
Program Results