NAG FL Interface
f01eqf (real_gen_matrix_pow)
1
Purpose
f01eqf computes the principal real power , for arbitrary , of a real by matrix .
2
Specification
Fortran Interface
Integer, Intent (In) |
:: |
n, lda |
Integer, Intent (Inout) |
:: |
ifail |
Real (Kind=nag_wp), Intent (In) |
:: |
p |
Real (Kind=nag_wp), Intent (Inout) |
:: |
a(lda,*) |
|
C Header Interface
#include <nag.h>
void |
f01eqf_ (const Integer *n, double a[], const Integer *lda, const double *p, Integer *ifail) |
|
C++ Header Interface
#include <nag.h> extern "C" {
void |
f01eqf_ (const Integer &n, double a[], const Integer &lda, const double &p, Integer &ifail) |
}
|
The routine may be called by the names f01eqf or nagf_matop_real_gen_matrix_pow.
3
Description
For a matrix
with no eigenvalues on the closed negative real line,
(
) can be defined as
where
is the principal logarithm of
(the unique logarithm whose spectrum lies in the strip
).
is computed using the real version of the Schur–Padé algorithm described in
Higham and Lin (2011) and
Higham and Lin (2013).
The real number is expressed as where and . Then . The integer power is found using a combination of binary powering and, if necessary, matrix inversion. The fractional power is computed, entirely in real arithmetic, using a real Schur decomposition and a Padé approximant.
4
References
Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA
Higham N J and Lin L (2011) A Schur–Padé algorithm for fractional powers of a matrix SIAM J. Matrix Anal. Appl. 32(3) 1056–1078
Higham N J and Lin L (2013) An improved Schur–Padé algorithm for fractional powers of a matrix and their Fréchet derivatives SIAM J. Matrix Anal. Appl. 34(3) 1341–1360
5
Arguments
-
1:
– Integer
Input
-
On entry: , the order of the matrix .
Constraint:
.
-
2:
– Real (Kind=nag_wp) array
Input/Output
-
Note: the second dimension of the array
a
must be at least
.
On entry: the by matrix .
On exit: the by matrix th power, .
-
3:
– Integer
Input
-
On entry: the first dimension of the array
a as declared in the (sub)program from which
f01eqf is called.
Constraint:
.
-
4:
– Real (Kind=nag_wp)
Input
-
On entry: the required power of .
-
5:
– Integer
Input/Output
-
On entry:
ifail must be set to
,
. If you are unfamiliar with this argument you should refer to
Section 4 in the Introduction to the NAG Library FL Interface for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value
is recommended. If the output of error messages is undesirable, then the value
is recommended. Otherwise, if you are not familiar with this argument, the recommended value is
.
When the value is used it is essential to test the value of ifail on exit.
On exit:
unless the routine detects an error or a warning has been flagged (see
Section 6).
6
Error Indicators and Warnings
If on entry
or
, explanatory error messages are output on the current error message unit (as defined by
x04aaf).
Errors or warnings detected by the routine:
-
has eigenvalues on the negative real line. The principal
th power is not defined.
f01fqf can be used to find a complex, non-principal
th power.
-
is singular so the th power cannot be computed.
-
has been computed using an IEEE double precision Padé approximant, although the arithmetic precision is higher than IEEE double precision.
-
An unexpected internal error occurred. This failure should not occur and suggests that the routine has been called incorrectly.
-
On entry, .
Constraint: .
-
On entry, and .
Constraint: .
An unexpected error has been triggered by this routine. Please
contact
NAG.
See
Section 7 in the Introduction to the NAG Library FL Interface for further information.
Your licence key may have expired or may not have been installed correctly.
See
Section 8 in the Introduction to the NAG Library FL Interface for further information.
Dynamic memory allocation failed.
See
Section 9 in the Introduction to the NAG Library FL Interface for further information.
7
Accuracy
For positive integer , the algorithm reduces to a sequence of matrix multiplications. For negative integer , the algorithm consists of a combination of matrix inversion and matrix multiplications.
For a normal matrix (for which ) and non-integer , the Schur decomposition is diagonal and the algorithm reduces to evaluating powers of the eigenvalues of and then constructing using the Schur vectors. This should give a very accurate result. In general however, no error bounds are available for the algorithm.
8
Parallelism and Performance
f01eqf is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f01eqf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the
X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the
Users' Note for your implementation for any additional implementation-specific information.
The cost of the algorithm is . The exact cost depends on the matrix but if then the cost is independent of .
of real allocatable memory is required by the routine.
If estimates of the condition number of
are required then
f01jef should be used.
10
Example
This example finds
where
and
10.1
Program Text
10.2
Program Data
10.3
Program Results