NAG FL Interface
c06ppf (fft_realherm_1d_multi_row)
1
Purpose
c06ppf computes the discrete Fourier transforms of sequences, each containing real data values or a Hermitian complex sequence stored in a complex storage format.
2
Specification
Fortran Interface
Integer, Intent (In) |
:: |
m, n |
Integer, Intent (Inout) |
:: |
ifail |
Real (Kind=nag_wp), Intent (Inout) |
:: |
x(m*(n+2)), work(*) |
Character (1), Intent (In) |
:: |
direct |
|
C++ Header Interface
#include <nag.h> extern "C" {
}
|
The routine may be called by the names c06ppf or nagf_sum_fft_realherm_1d_multi_row.
3
Description
Given
sequences of
real data values
, for
and
,
c06ppf simultaneously calculates the Fourier transforms of all the sequences defined by
The transformed values are complex, but for each value of the form a Hermitian sequence (i.e., is the complex conjugate of ), so they are completely determined by real numbers (since is real, as is for even).
Alternatively, given
Hermitian sequences of
complex data values
, this routine simultaneously calculates their inverse (
backward) discrete Fourier transforms defined by
The transformed values
are real.
(Note the scale factor in the above definition.)
A call of c06ppf with followed by a call with will restore the original data.
The routine uses a variant of the fast Fourier transform (FFT) algorithm (see
Brigham (1974)) known as the Stockham self-sorting algorithm, which is described in
Temperton (1983). Special coding is provided for the factors
,
,
and
.
4
References
Brigham E O (1974) The Fast Fourier Transform Prentice–Hall
Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350
5
Arguments
-
1:
– Character(1)
Input
-
On entry: if the forward transform as defined in
Section 3 is to be computed,
direct must be set equal to 'F'.
If the backward transform is to be computed,
direct must be set equal to 'B'.
Constraint:
or .
-
2:
– Integer
Input
-
On entry: , the number of sequences to be transformed.
Constraint:
.
-
3:
– Integer
Input
-
On entry: , the number of real or complex values in each sequence.
Constraint:
.
-
4:
– Real (Kind=nag_wp) array
Input/Output
-
On entry: the data must be stored such that consecutive elements of the same sequence are stored with a stride of
m and corresponding elements of different sequences are stored consecutively. An additional two spaces are reserved for each sequence to allow for the pairwise storage of real and imaginary parts in the transformed domain. In other words, if the data values of the
th sequence to be transformed are denoted by
, for
:
- if ,
must contain , for and ;
-
if , and must contain the real and imaginary parts respectively of , for and . (Note that for the sequence to be Hermitian, the imaginary part of , and of for even, must be zero.)
On exit:
- if then
and
will contain the real and imaginary parts respectively of , for and ;
- if then
will contain , for and ;
-
5:
– Real (Kind=nag_wp) array
Workspace
-
Note: the dimension of the array
work
must be at least
.
The workspace requirements as documented for c06ppf may be an overestimate in some implementations.
On exit:
contains the minimum workspace required for the current values of
m and
n with this implementation.
-
6:
– Integer
Input/Output
-
On entry:
ifail must be set to
,
. If you are unfamiliar with this argument you should refer to
Section 4 in the Introduction to the NAG Library FL Interface for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value
is recommended. If the output of error messages is undesirable, then the value
is recommended. Otherwise, if you are not familiar with this argument, the recommended value is
.
When the value is used it is essential to test the value of ifail on exit.
On exit:
unless the routine detects an error or a warning has been flagged (see
Section 6).
6
Error Indicators and Warnings
If on entry
or
, explanatory error messages are output on the current error message unit (as defined by
x04aaf).
Errors or warnings detected by the routine:
-
On entry, .
Constraint: .
-
On entry, .
Constraint: .
-
On entry, .
Constraint: or .
-
An internal error has occurred in this routine.
Check the routine call and any array sizes.
If the call is correct then please contact
NAG for assistance.
An unexpected error has been triggered by this routine. Please
contact
NAG.
See
Section 7 in the Introduction to the NAG Library FL Interface for further information.
Your licence key may have expired or may not have been installed correctly.
See
Section 8 in the Introduction to the NAG Library FL Interface for further information.
Dynamic memory allocation failed.
See
Section 9 in the Introduction to the NAG Library FL Interface for further information.
7
Accuracy
Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).
8
Parallelism and Performance
c06ppf is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
c06ppf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the
X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the
Users' Note for your implementation for any additional implementation-specific information.
The time taken by c06ppf is approximately proportional to , but also depends on the factors of . c06ppf is fastest if the only prime factors of are , and , and is particularly slow if is a large prime, or has large prime factors.
10
Example
This example reads in sequences of real data values and prints their discrete Fourier transforms (as computed by c06ppf with ), after expanding them from complex Hermitian form into a full complex sequences. Inverse transforms are then calculated by calling c06ppf with showing that the original sequences are restored.
10.1
Program Text
10.2
Program Data
10.3
Program Results