NAG CL Interface
s15arc (erfc_​real_​vector)

1 Purpose

s15arc returns an array of values of the complementary error function, erfcx.

2 Specification

#include <nag.h>
void  s15arc (Integer n, const double x[], double f[], NagError *fail)
The function may be called by the names: s15arc, nag_specfun_erfc_real_vector or nag_erfc_vector.

3 Description

s15arc calculates approximate values for the complement of the error function
erfcx = 2π x e-t2 dt = 1-erfx ,  
for an array of arguments xi, for i=1,2,,n.
Let x^ be the root of the equation erfcx-erfx=0 (then x^0.46875). For xx^ the value of erfcx is based on the following rational Chebyshev expansion for erfx:
erfx xR,m x2 ,  
where R,m denotes a rational function of degree in the numerator and m in the denominator.
For x>x^ the value of erfcx is based on a rational Chebyshev expansion for erfcx: for x^<x4 the value is based on the expansion
erfcx ex2 R,m x ;  
and for x>4 it is based on the expansion
erfcx ex2 x 1π + 1x2 R,m 1/x2 .  
For each expansion, the specific values of and m are selected to be minimal such that the maximum relative error in the expansion is of the order 10-d, where d is the maximum number of decimal digits that can be accurately represented for the particular implementation (see X02BEC).
For xxhi there is a danger of setting underflow in erfcx (the value of xhi is given in the Users' Note for your implementation). For xxhi, s15arc returns erfcx=0; for x-xhi it returns erfcx=2.

4 References

NIST Digital Library of Mathematical Functions
Cody W J (1969) Rational Chebyshev approximations for the error function Math.Comp. 23 631–637

5 Arguments

1: n Integer Input
On entry: n, the number of points.
Constraint: n0.
2: x[n] const double Input
On entry: the argument xi of the function, for i=1,2,,n.
3: f[n] double Output
On exit: erfcxi, the function values.
4: fail NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, n=value.
Constraint: n0.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

7 Accuracy

If δ and ε are relative errors in the argument and result, respectively, then in principle
ε 2x e -x2 πerfcx δ .  
That is, the relative error in the argument, x, is amplified by a factor 2xe-x2 πerfcx in the result.
The behaviour of this factor is shown in Figure 1.
Figure 1
Figure 1
It should be noted that near x=0 this factor behaves as 2xπ and hence the accuracy is largely determined by the machine precision. Also, for large negative x, where the factor is xe-x2π, accuracy is mainly limited by machine precision. However, for large positive x, the factor becomes 2x2 and to an extent relative accuracy is necessarily lost. The absolute accuracy E is given by
E 2xe-x2π δ  
so absolute accuracy is guaranteed for all x.

8 Parallelism and Performance

s15arc is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of x from a file, evaluates the function at each value of xi and prints the results.

10.1 Program Text

Program Text (s15arce.c)

10.2 Program Data

Program Data (s15arce.d)

10.3 Program Results

Program Results (s15arce.r)