NAG CL Interface
f11dxc (complex_gen_precon_jacobi)
1
Purpose
f11dxc computes the approximate solution of a complex, Hermitian or non-Hermitian, sparse system of linear equations applying a number of Jacobi iterations. It is expected that f11dxc will be used as a preconditioner for the iterative solution of complex sparse systems of equations.
2
Specification
void |
f11dxc (Nag_SparseNsym_Store store,
Nag_TransType trans,
Nag_InitializeA init,
Integer niter,
Integer n,
Integer nnz,
const Complex a[],
const Integer irow[],
const Integer icol[],
Nag_SparseNsym_CheckData check,
const Complex b[],
Complex x[],
Complex diag[],
NagError *fail) |
|
The function may be called by the names: f11dxc, nag_sparse_complex_gen_precon_jacobi or nag_sparse_nherm_jacobi.
3
Description
f11dxc computes the
approximate solution of the complex sparse system of linear equations
using
niter iterations of the Jacobi algorithm (see also
Golub and Van Loan (1996) and
Young (1971)):
where
and
.
f11dxc can be used both for non-Hermitian and Hermitian systems of equations. For Hermitian matrices, either all nonzero elements of the matrix
can be supplied using coordinate storage (CS), or only the nonzero elements of the lower triangle of
, using symmetric coordinate storage (SCS) (see the
F11 Chapter Introduction).
It is expected that f11dxc will be used as a preconditioner for the iterative solution of complex sparse systems of equations. This may be with either the Hermitian or non-Hermitian suites of functions.
For Hermitian systems the suite consists of:
For non-Hermitian systems the suite consists of:
4
References
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York
5
Arguments
-
1:
– Nag_SparseNsym_Store
Input
-
On entry: specifies whether the matrix
is stored using symmetric coordinate storage (SCS) (applicable only to a Hermitian matrix
) or coordinate storage (CS) (applicable to both Hermitian and non-Hermitian matrices).
- The complete matrix is stored in CS format.
- The lower triangle of the Hermitian matrix is stored in SCS format.
Constraint:
or .
-
2:
– Nag_TransType
Input
-
On entry: if
, specifies whether the approximate solution of
or of
is required.
- The approximate solution of is calculated.
- The approximate solution of is calculated.
Suggested value:
if the matrix is Hermitian and stored in CS format, it is recommended that for reasons of efficiency.
Constraint:
or .
-
3:
– Nag_InitializeA
Input
-
On entry: on first entry,
init should be set to
, unless the diagonal elements of
are already stored in the array
diag. If
diag already contains the diagonal of
, it must be set to
.
- diag must contain the diagonal of .
- diag will store the diagonal of on exit.
Suggested value:
on first entry;
, subsequently, unless
diag has been overwritten.
Constraint:
or .
-
4:
– Integer
Input
-
On entry: the number of Jacobi iterations requested.
Constraint:
.
-
5:
– Integer
Input
-
On entry: , the order of the matrix .
Constraint:
.
-
6:
– Integer
Input
-
On entry: if
, the number of nonzero elements in the matrix
.
If , the number of nonzero elements in the lower triangle of the matrix .
Constraints:
- if , ;
- if , .
-
7:
– const Complex
Input
-
On entry: if
, the nonzero elements in the matrix
(CS format).
If , the nonzero elements in the lower triangle of the matrix (SCS format).
In both cases, the elements of either
or of its lower triangle must be ordered by increasing row index and by increasing column index within each row. Multiple entries for the same row and columns indices are not permitted. The function
f11znc or
f11zpc may be used to reorder the elements in this way for CS and SCS storage, respectively.
-
8:
– const Integer
Input
-
9:
– const Integer
Input
-
On entry: if
, the row and column indices of the nonzero elements supplied in
a.
If
, the row and column indices of the nonzero elements of the lower triangle of the matrix
supplied in
a.
Constraints:
- , for ;
- if ,
, for ;
- if ,
, for ;
- either or both and , for .
-
10:
– Nag_SparseNsym_CheckData
Input
-
On entry: specifies whether or not the CS or SCS representation of the matrix
should be checked.
- Checks are carried out on the values of n, nnz, irow, icol; if , diag is also checked.
- None of these checks are carried out.
Constraint:
or .
-
11:
– const Complex
Input
-
On entry: the right-hand side vector .
-
12:
– Complex
Output
-
On exit: the approximate solution vector .
-
13:
– Complex
Input/Output
-
On entry: if , the diagonal elements of .
On exit: if
, unchanged on exit.
If , the diagonal elements of .
-
14:
– NagError *
Input/Output
-
The NAG error argument (see
Section 7 in the Introduction to the NAG Library CL Interface).
6
Error Indicators and Warnings
- A nonzero element has been supplied which does not lie within the matrix , is out of order, or has duplicate row and column indices. Consider calling either f11zac or f11zbc to reorder and sum or remove duplicates when or , respectively.
- NE_ALLOC_FAIL
-
Dynamic memory allocation failed.
See
Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
- NE_BAD_PARAM
-
On entry, argument had an illegal value.
- NE_INT
-
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
- NE_INT_2
-
On entry, and .
Constraint:
On entry, and .
Constraint:
- NE_INTERNAL_ERROR
-
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact
NAG for assistance.
See
Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
- NE_INVALID_CS
-
On entry, , and .
Constraint: and .
On entry, , and .
Constraint: and .
On entry, , and .
Constraint: and .
- NE_NO_LICENCE
-
Your licence key may have expired or may not have been installed correctly.
See
Section 8 in the Introduction to the NAG Library CL Interface for further information.
- NE_NOT_STRICTLY_INCREASING
-
On entry, is out of order: .
On entry, the location () is a duplicate: .
- NE_ZERO_DIAG_ELEM
-
On entry, the diagonal element of the th row is zero or missing: .
On entry, the element is zero: .
7
Accuracy
In general, the Jacobi method cannot be used on its own to solve systems of linear equations. The rate of convergence is bound by its spectral properties (see, for example,
Golub and Van Loan (1996)) and as a solver, the Jacobi method can only be applied to a limited set of matrices. One condition that guarantees convergence is strict diagonal dominance.
However, the Jacobi method can be used successfully as a preconditioner to a wider class of systems of equations. The Jacobi method has good vector/parallel properties, hence it can be applied very efficiently. Unfortunately, it is not possible to provide criteria which define the applicability of the Jacobi method as a preconditioner, and its usefulness must be judged for each case.
8
Parallelism and Performance
f11dxc is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f11dxc makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the
X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the
Users' Note for your implementation for any additional implementation-specific information.
The time taken for a call to f11dxc is proportional to .
It is expected that a common use of f11dxc will be as preconditioner for the iterative solution of complex, Hermitian or non-Hermitian, linear systems. In this situation, f11dxc is likely to be called many times. In the interests of both reliability and efficiency, you are recommended to set for the first of such calls, and to set for all subsequent calls.
10
Example
This example solves the complex sparse non-Hermitian system of equations iteratively using f11dxc as a preconditioner.
10.1
Program Text
10.2
Program Data
10.3
Program Results