The routine may be called by the names s21ccf or nagf_specfun_jactheta_real.
3Description
s21ccf evaluates an approximation to the Jacobian theta functions , , , and given by
where and (the nome) are real with .
These functions are important in practice because every one of the Jacobian elliptic functions (see s21cbf) can be expressed as the ratio of two Jacobian theta functions (see Whittaker and Watson (1990)). There is also a bewildering variety of notations used in the literature to define them. Some authors (e.g., Section 16.27 of Abramowitz and Stegun (1972)) define the argument in the trigonometric terms to be instead of . This can often lead to confusion, so great care must, therefore, be exercised when consulting the literature. Further details (including various relations and identities) can be found in the references.
s21ccf is based on a truncated series approach. If differs from or by an integer when , it follows from the periodicity and symmetry properties of the functions that and . In a region for which the approximation is sufficiently accurate, is set equal to the first term () of the transformed series
and is set equal to the first two terms (i.e., ) of
where
. Otherwise, the trigonometric series for and are used. For all values of , and are computed from the relations and .
4References
Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications
Byrd P F and Friedman M D (1971) Handbook of Elliptic Integrals for Engineers and Scientists pp. 315–320 (2nd Edition) Springer–Verlag
Magnus W, Oberhettinger F and Soni R P (1966) Formulas and Theorems for the Special Functions of Mathematical Physics 371–377 Springer–Verlag
Tølke F (1966) Praktische Funktionenlehre (Bd. II) 1–38 Springer–Verlag
Whittaker E T and Watson G N (1990) A Course in Modern Analysis (4th Edition) Cambridge University Press
5Arguments
1: – IntegerInput
On entry: denotes the function to be evaluated. Note that is equivalent to .
Constraint:
.
2: – Real (Kind=nag_wp)Input
On entry: the argument of the function.
3: – Real (Kind=nag_wp)Input
On entry: the argument of the function.
Constraint:
.
4: – IntegerInput/Output
On entry: ifail must be set to , or to set behaviour on detection of an error; these values have no effect when no error is detected.
A value of causes the printing of an error message and program execution will be halted; otherwise program execution continues. A value of means that an error message is printed while a value of means that it is not.
If halting is not appropriate, the value or is recommended. If message printing is undesirable, then the value is recommended. Otherwise, the value is recommended. When the value or is used it is essential to test the value of ifail on exit.
On exit: unless the routine detects an error or a warning has been flagged (see Section 6).
6Error Indicators and Warnings
If on entry or , explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
An unexpected error has been triggered by this routine. Please
contact NAG.
See Section 7 in the Introduction to the NAG Library FL Interface for further information.
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library FL Interface for further information.
Dynamic memory allocation failed.
See Section 9 in the Introduction to the NAG Library FL Interface for further information.
7Accuracy
In principle the routine is capable of achieving full relative precision in the computed values. However, the accuracy obtainable in practice depends on the accuracy of the standard elementary functions such as sin and cos.
8Parallelism and Performance
s21ccf is not threaded in any implementation.
9Further Comments
None.
10Example
This example evaluates at when , and prints the results.