NAG FL Interface
f16ubf (zgb_​norm)

Settings help

FL Name Style:


FL Specification Language:


1 Purpose

f16ubf calculates the value of the 1-norm, the -norm, the Frobenius norm or the maximum absolute value of the elements of a complex m×n band matrix stored in banded packed form.
It can also be used to compute the value of the 2-norm of a row n-vector or a column m-vector.

2 Specification

Fortran Interface
Function f16ubf ( inorm, m, n, kl, ku, ab, ldab)
Real (Kind=nag_wp) :: f16ubf
Integer, Intent (In) :: inorm, m, n, kl, ku, ldab
Complex (Kind=nag_wp), Intent (In) :: ab(ldab,*)
C Header Interface
#include <nag.h>
double  f16ubf_ (const Integer *inorm, const Integer *m, const Integer *n, const Integer *kl, const Integer *ku, const Complex ab[], const Integer *ldab)
The routine may be called by the names f16ubf or nagf_blast_zgb_norm.

3 Description

Given a complex m×n band matrix, A, f16ubf calculates one of the values given by
A1=maxji=1m|aij| (the 1-norm of A),
A=maxij= 1n|aij| (the -norm of A),
AF=(i=1mj=1n |aij|2)1/2 (the Frobenius norm of A),  or
maxi,j|aij| (the maximum absolute element value of A).
If m or n is 1 then additionally f16ubf can calculate the value A2=|ai|2 (the 2-norm of A).

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee https://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: inorm Integer Input
On entry: specifies the value to be returned. The integer codes shown below can be replaced by the equivalent named constants of the form NAG_?_NORM. These named constants are available via the nag_library module and are also used in the example program for clarity.
inorm=171 (NAG_ONE_NORM)
The 1-norm.
inorm=173 (NAG_TWO_NORM)
The 2-norm of a row or column vector.
inorm=174 (NAG_FROBENIUS_NORM)
The Frobenius (or Euclidean) norm.
inorm=175 (NAG_INF_NORM)
The -norm.
inorm=177 (NAG_MAX_NORM)
The value maxi,j|aij| (not a norm).
Constraints:
  • inorm=171, 173, 174, 175 or 177;
  • if inorm=173, m=1 or n=1.
2: m Integer Input
On entry: m, the number of rows of the matrix A. If m0 on input, f16ubf returns 0.
3: n Integer Input
On entry: n, the number of columns of the matrix A. If n0 on input, f16ubf returns 0.
4: kl Integer Input
On entry: kl, the number of subdiagonals within the band of A. If kl0 on input, f16ubf returns 0.
5: ku Integer Input
On entry: ku, the number of superdiagonals within the band of A. If ku0 on input, f16ubf returns 0.
6: ab(ldab,*) Complex (Kind=nag_wp) array Input
Note: the second dimension of the array ab must be at least max(1,n).
On entry: the m×n band matrix A.
The matrix is stored in rows 1 to kl+ku+1, more precisely, the element Aij must be stored in
ab(ku+1+i-j,j)  for ​max(1,j-ku)imin(m,j+kl).  
7: ldab Integer Input
On entry: the first dimension of the array ab as declared in the (sub)program from which f16ubf is called.
Constraint: ldabkl+ku+1.

6 Error Indicators and Warnings

If any constraint on an input parameter is violated, an error message is printed and program execution is terminated.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

f16ubf is not threaded in any implementation.

9 Further Comments

None.

10 Example

Reads in a 6×4 banded complex matrix A with two subdiagonals and one superdiagonal, and prints the four norms of A.

10.1 Program Text

Program Text (f16ubfe.f90)

10.2 Program Data

Program Data (f16ubfe.d)

10.3 Program Results

Program Results (f16ubfe.r)