This manual relates to an old release of the Library.
The documentation for the current release is also available on this site.

NAG FL Interface
f06scf (zhemv)

Settings help

FL Name Style:


FL Specification Language:


1 Purpose

f06scf computes the matrix-vector product for a complex Hermitian matrix.

2 Specification

Fortran Interface
Subroutine f06scf ( uplo, n, alpha, a, lda, x, incx, beta, y, incy)
Integer, Intent (In) :: n, lda, incx, incy
Complex (Kind=nag_wp), Intent (In) :: alpha, a(lda,*), x(*), beta
Complex (Kind=nag_wp), Intent (Inout) :: y(*)
Character (1), Intent (In) :: uplo
C Header Interface
#include <nag.h>
void  f06scf_ (const char *uplo, const Integer *n, const Complex *alpha, const Complex a[], const Integer *lda, const Complex x[], const Integer *incx, const Complex *beta, Complex y[], const Integer *incy, const Charlen length_uplo)
The routine may be called by the names f06scf, nagf_blas_zhemv or its BLAS name zhemv.

3 Description

f06scf performs the matrix-vector operation
yαAx+βy ,  
where A is an n×n complex Hermitian matrix, x and y are n-element complex vectors, and α and β are complex scalars.

4 References

None.

5 Arguments

1: uplo Character(1) Input
On entry: specifies whether the upper or lower triangular part of A is stored.
uplo='U'
The upper triangular part of A is stored.
uplo='L'
The lower triangular part of A is stored.
Constraint: uplo='U' or 'L'.
2: n Integer Input
On entry: n, the order of the matrix A.
Constraint: n0.
3: alpha Complex (Kind=nag_wp) Input
On entry: the scalar α.
4: a(lda,*) Complex (Kind=nag_wp) array Input
Note: the second dimension of the array a must be at least max(1,n).
On entry: the n×n Hermitian matrix A.
  • If uplo='U', the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.
  • If uplo='L', the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.
5: lda Integer Input
On entry: the first dimension of the array a as declared in the (sub)program from which f06scf is called.
Constraint: lda max(1,n) .
6: x(*) Complex (Kind=nag_wp) array Input
Note: the dimension of the array x must be at least max(1, 1+(n-1) ×|incx| ) .
On entry: the n-element vector x.
If incx>0, xi must be stored in x(1+(i-1)×incx), for i=1,2,,n.
If incx<0, xi must be stored in x(1-(n-i)×incx), for i=1,2,,n.
Intermediate elements of x are not referenced.
7: incx Integer Input
On entry: the increment in the subscripts of x between successive elements of x.
Constraint: incx0.
8: beta Complex (Kind=nag_wp) Input
On entry: the scalar β.
9: y(*) Complex (Kind=nag_wp) array Input/Output
Note: the dimension of the array y must be at least max(1, 1+(n-1) ×|incy| ) .
On entry: the n-element vector y, if beta=0.0, y need not be set.
If incy>0, yi must be stored in y(1+(i1)×incy) , for i=1,2,,n.
If incy<0, yi must be stored in y(1(ni)×incy) , for i=1,2,,n.
On exit: the updated vector y stored in the array elements used to supply the original vector y.
10: incy Integer Input
On entry: the increment in the subscripts of y between successive elements of y.
Constraint: incy0.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

f06scf is not threaded in any implementation.

9 Further Comments

None.

10 Example

None.