This manual relates to an old release of the Library.
The documentation for the current release is also available on this site.

NAG FL Interface
c06dcf (chebyshev)

Settings help

FL Name Style:


FL Specification Language:


1 Purpose

c06dcf evaluates a polynomial from its Chebyshev series representation at a set of points.

2 Specification

Fortran Interface
Subroutine c06dcf ( x, lx, xmin, xmax, c, n, s, res, ifail)
Integer, Intent (In) :: lx, n, s
Integer, Intent (Inout) :: ifail
Real (Kind=nag_wp), Intent (In) :: x(lx), xmin, xmax, c(n)
Real (Kind=nag_wp), Intent (Out) :: res(lx)
C Header Interface
#include <nag.h>
void  c06dcf_ (const double x[], const Integer *lx, const double *xmin, const double *xmax, const double c[], const Integer *n, const Integer *s, double res[], Integer *ifail)
The routine may be called by the names c06dcf or nagf_sum_chebyshev.

3 Description

c06dcf evaluates, at each point in a given set X, the sum of a Chebyshev series of one of three forms according to the value of the parameter s:
s=1: 0.5c1+ j=2 n cj Tj-1 (x¯)
s=2: 0.5c1+ j=2 n cj T 2j-2 (x¯)
s=3: j=1 n cj T 2j-1 (x¯)
where x¯ lies in the range -1.0x¯1.0. Here Tr(x) is the Chebyshev polynomial of order r in x¯, defined by cos(ry) where cosy=x¯.
It is assumed that the independent variable x¯ in the interval [-1.0,+1.0] was obtained from your original variable xX, a set of real numbers in the interval [xmin,xmax], by the linear transformation
x¯ = 2x-(xmax+xmin) xmax-xmin .  
The method used is based upon a three-term recurrence relation; for details see Clenshaw (1962).
The coefficients cj are normally generated by other routines, for example they may be those returned by the interpolation routine e01aef (in vector a), by a least squares fitting routine in Chapter E02, or as the solution of a boundary value problem by d02jaf, d02jbf or d02uef.

4 References

Clenshaw C W (1962) Chebyshev Series for Mathematical Functions Mathematical tables HMSO

5 Arguments

1: x(lx) Real (Kind=nag_wp) array Input
On entry: xX, the set of arguments of the series.
Constraint: xminx(i)xmax, for i=1,2,,lx.
2: lx Integer Input
On entry: the number of evaluation points in X.
Constraint: lx1.
3: xmin Real (Kind=nag_wp) Input
4: xmax Real (Kind=nag_wp) Input
On entry: the lower and upper end points respectively of the interval [xmin,xmax]. The Chebyshev series representation is in terms of the normalized variable x¯, where
x¯ = 2x-(xmax+xmin) xmax-xmin .  
Constraint: xmin<xmax.
5: c(n) Real (Kind=nag_wp) array Input
On entry: c(j) must contain the coefficient cj of the Chebyshev series, for j=1,2,,n.
6: n Integer Input
On entry: n, the number of terms in the series.
Constraint: n1.
7: s Integer Input
On entry: determines the series (see Section 3).
s=1
The series is general.
s=2
The series is even.
s=3
The series is odd.
Constraint: s=1, 2 or 3.
8: res(lx) Real (Kind=nag_wp) array Output
On exit: the Chebyshev series evaluated at the set of points X.
9: ifail Integer Input/Output
On entry: ifail must be set to 0, −1 or 1 to set behaviour on detection of an error; these values have no effect when no error is detected.
A value of 0 causes the printing of an error message and program execution will be halted; otherwise program execution continues. A value of −1 means that an error message is printed while a value of 1 means that it is not.
If halting is not appropriate, the value −1 or 1 is recommended. If message printing is undesirable, then the value 1 is recommended. Otherwise, the value 0 is recommended. When the value -1 or 1 is used it is essential to test the value of ifail on exit.
On exit: ifail=0 unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry ifail=0 or −1, explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
ifail=1
On entry, lx=value.
Constraint: lx1.
ifail=2
On entry, n=value.
Constraint: n1.
ifail=3
On entry, s=value.
Constraint: s=1, 2 or 3.
ifail=4
On entry, xmax=value and xmin=value.
Constraint: xmin<xmax.
ifail=5
On entry, element x(value)=value, xmin=value and xmax=value.
Constraint: xminx(i)xmax, for all i.
ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 7 in the Introduction to the NAG Library FL Interface for further information.
ifail=-399
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library FL Interface for further information.
ifail=-999
Dynamic memory allocation failed.
See Section 9 in the Introduction to the NAG Library FL Interface for further information.

7 Accuracy

There may be a loss of significant figures due to cancellation between terms. However, provided that n is not too large, c06dcf yields results which differ little from the best attainable for the available machine precision.

8 Parallelism and Performance

c06dcf is not threaded in any implementation.

9 Further Comments

The time taken increases with n.
c06dcf has been prepared in the present form to complement a number of integral equation solving routines which use Chebyshev series methods, e.g., d05aaf and d05abf.

10 Example

This example evaluates
0.5+ T1(x)+ 0.5T2(x)+ 0.25T3(x)  
at the points X=[0.5,1.0,-0.2].

10.1 Program Text

Program Text (c06dcfe.f90)

10.2 Program Data

Program Data (c06dcfe.d)

10.3 Program Results

Program Results (c06dcfe.r)