This manual relates to an old release of the Library.
The documentation for the current release is also available on this site.

NAG CL Interface
f16sfc (ztrmv)

Settings help

CL Name Style:


1 Purpose

f16sfc performs matrix-vector multiplication for a complex triangular matrix.

2 Specification

#include <nag.h>
void  f16sfc (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans, Nag_DiagType diag, Integer n, Complex alpha, const Complex a[], Integer pda, Complex x[], Integer incx, NagError *fail)
The function may be called by the names: f16sfc, nag_blast_ztrmv or nag_ztrmv.

3 Description

f16sfc performs one of the matrix-vector operations
xαAx,  xαATx  or  xαAHx,  
where A is an n×n complex triangular matrix, and x is an n-element complex vector and α is a complex scalar.

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee https://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: order Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2: uplo Nag_UploType Input
On entry: specifies whether A is upper or lower triangular.
uplo=Nag_Upper
A is upper triangular.
uplo=Nag_Lower
A is lower triangular.
Constraint: uplo=Nag_Upper or Nag_Lower.
3: trans Nag_TransType Input
On entry: specifies the operation to be performed.
trans=Nag_NoTrans
xαAx.
trans=Nag_Trans
xαATx.
trans=Nag_ConjTrans
xαAHx.
Constraint: trans=Nag_NoTrans, Nag_Trans or Nag_ConjTrans.
4: diag Nag_DiagType Input
On entry: specifies whether A has nonunit or unit diagonal elements.
diag=Nag_NonUnitDiag
The diagonal elements are stored explicitly.
diag=Nag_UnitDiag
The diagonal elements are assumed to be 1 and are not referenced.
Constraint: diag=Nag_NonUnitDiag or Nag_UnitDiag.
5: n Integer Input
On entry: n, the order of the matrix A.
Constraint: n0.
6: alpha Complex Input
On entry: the scalar α.
7: a[dim] const Complex Input
Note: the dimension, dim, of the array a must be at least max(1,pda×n).
On entry: the n×n triangular matrix A.
If order=Nag_ColMajor, Aij is stored in a[(j-1)×pda+i-1].
If order=Nag_RowMajor, Aij is stored in a[(i-1)×pda+j-1].
If uplo=Nag_Upper, the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.
If uplo=Nag_Lower, the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.
If diag=Nag_UnitDiag, the diagonal elements of A are assumed to be 1, and are not referenced.
8: pda Integer Input
On entry: the stride separating row or column elements (depending on the value of order) of the matrix A in the array a.
Constraint: pdamax(1,n).
9: x[dim] Complex Input/Output
Note: the dimension, dim, of the array x must be at least max(1,1+(n-1)|incx|).
On entry: the right-hand side vector b.
On exit: the solution vector x.
10: incx Integer Input
On entry: the increment in the subscripts of x between successive elements of x.
Constraint: incx0.
11: fail NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, incx=value.
Constraint: incx0.
On entry, n=value.
Constraint: n0.
NE_INT_2
On entry, pda=value, n=value.
Constraint: pdamax(1,n).
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

f16sfc is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the matrix-vector product
y=αAx  
where
A = ( 1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 2.0+1.0i 2.0+2.0i 0.0+0.0i 0.0+0.0i 3.0+1.0i 3.0+2.0i 3.0+3.0i 0.0+0.0i 4.0+1.0i 4.0+2.0i 4.0+3.0i 4.0+4.0i ) ,  
x = ( -1.0+1.0i 2.0-2.0i -3.0+2.0i -2.0+1.0i )  
and
α=1.0+0.0i .  

10.1 Program Text

Program Text (f16sfce.c)

10.2 Program Data

Program Data (f16sfce.d)

10.3 Program Results

Program Results (f16sfce.r)