This manual relates to an old release of the Library.
The documentation for the current release is also available on this site.

NAG CL Interface
f16sec (zhpmv)

Settings help

CL Name Style:


1 Purpose

f16sec performs matrix-vector multiplication for a complex Hermitian matrix stored in packed form.

2 Specification

#include <nag.h>
void  f16sec (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex alpha, const Complex ap[], const Complex x[], Integer incx, Complex beta, Complex y[], Integer incy, NagError *fail)
The function may be called by the names: f16sec, nag_blast_zhpmv or nag_zhpmv.

3 Description

f16sec performs the matrix-vector operation
yαAx + βy ,  
where A is an n×n complex Hermitian matrix stored in packed form, x and y are n-element complex vectors, and α and β are complex scalars.

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee https://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: order Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2: uplo Nag_UploType Input
On entry: specifies whether the upper or lower triangular part of A is stored.
uplo=Nag_Upper
The upper triangular part of A is stored.
uplo=Nag_Lower
The lower triangular part of A is stored.
Constraint: uplo=Nag_Upper or Nag_Lower.
3: n Integer Input
On entry: n, the order of the matrix A.
Constraint: n0.
4: alpha Complex Input
On entry: the scalar α.
5: ap[dim] const Complex Input
Note: the dimension, dim, of the array ap must be at least max(1, n × (n+1) / 2 ) .
On entry: the n×n Hermitian matrix A, packed by rows or columns.
The storage of elements Aij depends on the order and uplo arguments as follows:
if order=Nag_ColMajor and uplo=Nag_Upper,
Aij is stored in ap[(j-1)×j/2+i-1], for ij;
if order=Nag_ColMajor and uplo=Nag_Lower,
Aij is stored in ap[(2n-j)×(j-1)/2+i-1], for ij;
if order=Nag_RowMajor and uplo=Nag_Upper,
Aij is stored in ap[(2n-i)×(i-1)/2+j-1], for ij;
if order=Nag_RowMajor and uplo=Nag_Lower,
Aij is stored in ap[(i-1)×i/2+j-1], for ij.
6: x[dim] const Complex Input
Note: the dimension, dim, of the array x must be at least max(1,1+(n-1)|incx|).
On entry: the n-element vector x.
If incx>0, xi must be stored in x[(i-1)×incx], for i=1,2,,n.
If incx<0, xi must be stored in x[(n-i)×|incx|], for i=1,2,,n.
Intermediate elements of x are not referenced. If n=0, x is not referenced and may be NULL.
7: incx Integer Input
On entry: the increment in the subscripts of x between successive elements of x.
Constraint: incx0.
8: beta Complex Input
On entry: the scalar β.
9: y[dim] Complex Input/Output
Note: the dimension, dim, of the array y must be at least max(1,1+(n-1)|incy|).
On entry: the vector y. See x for details of storage.
If beta=0, y need not be set.
On exit: the updated vector y.
10: incy Integer Input
On entry: the increment in the subscripts of y between successive elements of y.
Constraint: incy0.
11: fail NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, incx=value.
Constraint: incx0.
On entry, incy=value.
Constraint: incy0.
On entry, n=value.
Constraint: n0.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

f16sec is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the matrix-vector product
y=αAx+βy  
where
A = ( 1.0+0.0i 2.0-1.0i 3.0-1.0i 4.0-1.0i 2.0+1.0i 2.0+0.0i 3.0-2.0i 4.0-2.0i 3.0+1.0i 3.0+2.0i 3.0+0.0i 4.0-3.0i 4.0+1.0i 4.0+1.0i 4.0+3.0i 4.0+0.0i ) ,  
x = ( -1.0+1.0i 2.0-3.0i -3.0+2.0i 1.0-1.0i ) ,  
y = ( 2.5+2.5i 2.5+1.5i 2.5+5.0i 6.0+9.0i ) ,  
α=1.0+0.0i   and   β=2.0+0.0i .  

10.1 Program Text

Program Text (f16sece.c)

10.2 Program Data

Program Data (f16sece.d)

10.3 Program Results

Program Results (f16sece.r)