NAG FL Interface
s21baf (ellipint_​symm_​1_​degen)

Settings help

FL Name Style:

FL Specification Language:

1 Purpose

s21baf returns a value of an elementary integral, which occurs as a degenerate case of an elliptic integral of the first kind, via the function name.

2 Specification

Fortran Interface
Function s21baf ( x, y, ifail)
Real (Kind=nag_wp) :: s21baf
Integer, Intent (Inout) :: ifail
Real (Kind=nag_wp), Intent (In) :: x, y
C Header Interface
#include <nag.h>
double  s21baf_ (const double *x, const double *y, Integer *ifail)
The routine may be called by the names s21baf or nagf_specfun_ellipint_symm_1_degen.

3 Description

s21baf calculates an approximate value for the integral
RC (x,y) = 12 0 dt (t+y) . t+x  
where x0 and y0.
This function, which is related to the logarithm or inverse hyperbolic functions for y<x and to inverse circular functions if x<y, arises as a degenerate form of the elliptic integral of the first kind. If y<0, the result computed is the Cauchy principal value of the integral.
The basic algorithm, which is due to Carlson (1979) and Carlson (1988), is to reduce the arguments recursively towards their mean by the system:
x0=x y0=y μn=(xn+2yn)/3, Sn=(yn-xn)/3μn λn=yn+2xnyn xn+1=(xn+λn)/4, yn+1=(yn+λn)/4.  
The quantity |Sn| for n=0,1,2,3, decreases with increasing n, eventually |Sn|1/4n. For small enough Sn the required function value can be approximated by the first few terms of the Taylor series about the mean. That is
RC(x,y)=(1+3Sn210+Sn37+3Sn48+9Sn522) /μn.  
The truncation error involved in using this approximation is bounded by 16|Sn|6/(1-2|Sn|) and the recursive process is stopped when Sn is small enough for this truncation error to be negligible compared to the machine precision.
Within the domain of definition, the function value is itself representable for all representable values of its arguments. However, for values of the arguments near the extremes the above algorithm must be modified so as to avoid causing underflows or overflows in intermediate steps. In extreme regions arguments are prescaled away from the extremes and compensating scaling of the result is done before returning to the calling program.

4 References

NIST Digital Library of Mathematical Functions
Carlson B C (1979) Computing elliptic integrals by duplication Numerische Mathematik 33 1–16
Carlson B C (1988) A table of elliptic integrals of the third kind Math. Comput. 51 267–280

5 Arguments

1: x Real (Kind=nag_wp) Input
2: y Real (Kind=nag_wp) Input
On entry: the arguments x and y of the function, respectively.
Constraint: x0.0 and y0.0.
3: ifail Integer Input/Output
On entry: ifail must be set to 0, −1 or 1 to set behaviour on detection of an error; these values have no effect when no error is detected.
A value of 0 causes the printing of an error message and program execution will be halted; otherwise program execution continues. A value of −1 means that an error message is printed while a value of 1 means that it is not.
If halting is not appropriate, the value −1 or 1 is recommended. If message printing is undesirable, then the value 1 is recommended. Otherwise, the value 0 is recommended. When the value -1 or 1 is used it is essential to test the value of ifail on exit.
On exit: ifail=0 unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry ifail=0 or −1, explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
Note: on soft failure the routine returns zero.
On entry, x=value.
Constraint: x0.0.
The function is undefined.
On entry, y=0.0.
Constraint: y0.0.
The function is undefined and returns zero.
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 7 in the Introduction to the NAG Library FL Interface for further information.
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library FL Interface for further information.
Dynamic memory allocation failed.
See Section 9 in the Introduction to the NAG Library FL Interface for further information.

7 Accuracy

In principle the routine is capable of producing full machine precision. However, round-off errors in internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the algorithm does not involve any significant amplification of round-off error. It is reasonable to assume that the result is accurate to within a small multiple of the machine precision.

8 Parallelism and Performance

s21baf is not threaded in any implementation.

9 Further Comments

You should consult the S Chapter Introduction which shows the relationship of this function to the classical definitions of the elliptic integrals.

10 Example

This example simply generates a small set of nonextreme arguments which are used with the routine to produce the table of low accuracy results.

10.1 Program Text

Program Text (s21bafe.f90)

10.2 Program Data


10.3 Program Results

Program Results (s21bafe.r)