# NAG FL Interfacef06sff (ztrmv)

## ▸▿ Contents

Settings help

FL Name Style:

FL Specification Language:

## 1Purpose

f06sff computes the matrix-vector product for a complex triangular matrix, its transpose or its conjugate transpose.

## 2Specification

Fortran Interface
 Subroutine f06sff ( uplo, diag, n, a, lda, x, incx)
 Integer, Intent (In) :: n, lda, incx Complex (Kind=nag_wp), Intent (In) :: a(lda,*) Complex (Kind=nag_wp), Intent (Inout) :: x(*) Character (1), Intent (In) :: uplo, trans, diag
#include <nag.h>
 void f06sff_ (const char *uplo, const char *trans, const char *diag, const Integer *n, const Complex a[], const Integer *lda, Complex x[], const Integer *incx, const Charlen length_uplo, const Charlen length_trans, const Charlen length_diag)
The routine may be called by the names f06sff, nagf_blas_ztrmv or its BLAS name ztrmv.

## 3Description

f06sff performs one of the matrix-vector operations
 $x←Ax , x←ATx or x←AHx ,$
where $A$ is an $n×n$ complex triangular matrix, and $x$ is an $n$-element complex vector.

None.

## 5Arguments

1: $\mathbf{uplo}$Character(1) Input
On entry: specifies whether $A$ is upper or lower triangular.
${\mathbf{uplo}}=\text{'U'}$
$A$ is upper triangular.
${\mathbf{uplo}}=\text{'L'}$
$A$ is lower triangular.
Constraint: ${\mathbf{uplo}}=\text{'U'}$ or $\text{'L'}$.
2: $\mathbf{trans}$Character(1) Input
On entry: specifies the operation to be performed.
${\mathbf{trans}}=\text{'N'}$
$x←Ax$.
${\mathbf{trans}}=\text{'T'}$
$x←{A}^{\mathrm{T}}x$.
${\mathbf{trans}}=\text{'C'}$
$x←{A}^{\mathrm{H}}x$.
Constraint: ${\mathbf{trans}}=\text{'N'}$, $\text{'T'}$ or $\text{'C'}$.
3: $\mathbf{diag}$Character(1) Input
On entry: specifies whether $A$ has nonunit or unit diagonal elements.
${\mathbf{diag}}=\text{'N'}$
The diagonal elements are stored explicitly.
${\mathbf{diag}}=\text{'U'}$
The diagonal elements are assumed to be $1$, and are not referenced.
Constraint: ${\mathbf{diag}}=\text{'N'}$ or $\text{'U'}$.
4: $\mathbf{n}$Integer Input
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
5: $\mathbf{a}\left({\mathbf{lda}},*\right)$Complex (Kind=nag_wp) array Input
Note: the second dimension of the array a must be at least ${\mathbf{n}}$.
On entry: the $n×n$ triangular matrix $A$.
• If ${\mathbf{uplo}}=\text{'U'}$, $A$ is upper triangular and the elements of the array below the diagonal are not referenced.
• If ${\mathbf{uplo}}=\text{'L'}$, $A$ is lower triangular and the elements of the array above the diagonal are not referenced.
• If ${\mathbf{diag}}=\text{'U'}$, the diagonal elements of $A$ are assumed to be $1$, and are not referenced.
6: $\mathbf{lda}$Integer Input
On entry: the first dimension of the array a as declared in the (sub)program from which f06sff is called.
Constraint: ${\mathbf{lda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
7: $\mathbf{x}\left(*\right)$Complex (Kind=nag_wp) array Input/Output
Note: the dimension of the array x must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)×|{\mathbf{incx}}|\right)$.
On entry: the vector $x$.
If ${\mathbf{incx}}>0$, ${x}_{\mathit{i}}$ must be stored in ${\mathbf{x}}\left(1+\left(\mathit{i}–1\right)×{\mathbf{incx}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
If ${\mathbf{incx}}<0$, ${x}_{\mathit{i}}$ must be stored in ${\mathbf{x}}\left(1–\left({\mathbf{n}}–\mathit{i}\right)×{\mathbf{incx}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
On exit: the updated vector $x$ stored in the array elements used to supply the original vector $x$.
8: $\mathbf{incx}$Integer Input
On entry: the increment in the subscripts of x between successive elements of $x$.
Constraint: ${\mathbf{incx}}\ne 0$.

None.

Not applicable.

## 8Parallelism and Performance

f06sff is not threaded in any implementation.