# NAG FL Interfacef06frf (dnhousg)

## ▸▿ Contents

Settings help

FL Name Style:

FL Specification Language:

## 1Purpose

f06frf generates a real elementary reflection in the NAG (as opposed to LINPACK) style.

## 2Specification

Fortran Interface
 Subroutine f06frf ( n, x, incx, tol, zeta)
 Integer, Intent (In) :: n, incx Real (Kind=nag_wp), Intent (In) :: tol Real (Kind=nag_wp), Intent (Inout) :: alpha, x(*) Real (Kind=nag_wp), Intent (Out) :: zeta
#include <nag.h>
 void f06frf_ (const Integer *n, double *alpha, double x[], const Integer *incx, const double *tol, double *zeta)
The routine may be called by the names f06frf or nagf_blas_dnhousg.

## 3Description

f06frf generates details of a real elementary reflection (Householder matrix), $P$, such that
 $P ( α x )=( β 0 )$
where $P$ is orthogonal, $\alpha$ and $\beta$ are real scalars, and $x$ is an $n$-element real vector.
$P$ is given in the form
 $P=I-( ζ z ) ( ζ zT ) ,$
where $z$ is an $n$-element real vector and $\zeta$ is a real scalar.
If $x$ is such that
 $max|xi|≤max(tol,ε|α|)$
where $\epsilon$ is the machine precision and $\mathit{tol}$ is a user-supplied tolerance, then $\zeta$ is set to $0$, and $P$ can be taken to be the unit matrix. Otherwise $1\le \zeta \le \sqrt{2}$.

None.

## 5Arguments

1: $\mathbf{n}$Integer Input
On entry: $n$, the number of elements in $x$ and $z$.
2: $\mathbf{alpha}$Real (Kind=nag_wp) Input/Output
On entry: the scalar $\alpha$.
On exit: the scalar $\beta$.
3: $\mathbf{x}\left(*\right)$Real (Kind=nag_wp) array Input/Output
Note: the dimension of the array x must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)×{\mathbf{incx}}\right)$.
On entry: the $n$-element vector $x$. ${x}_{\mathit{i}}$ must be stored in ${\mathbf{x}}\left(1+\left(\mathit{i}-1\right)×{\mathbf{incx}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
Intermediate elements of x are not referenced.
On exit: the referenced elements are overwritten by details of the real elementary reflection.
4: $\mathbf{incx}$Integer Input
On entry: the increment in the subscripts of x between successive elements of $x$.
Constraint: ${\mathbf{incx}}>0$.
5: $\mathbf{tol}$Real (Kind=nag_wp) Input
On entry: the value $\mathit{tol}$.
6: $\mathbf{zeta}$Real (Kind=nag_wp) Output
On exit: the scalar $\zeta$.

None.

Not applicable.

## 8Parallelism and Performance

f06frf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.