# NAG FL Interfacef06flf (darang)

## ▸▿ Contents

Settings help

FL Name Style:

FL Specification Language:

## 1Purpose

f06flf returns the absolutely largest and absolutely smallest values from a real vector.

## 2Specification

Fortran Interface
 Subroutine f06flf ( n, x, incx, xmax, xmin)
 Integer, Intent (In) :: n, incx Real (Kind=nag_wp), Intent (In) :: x(*) Real (Kind=nag_wp), Intent (Out) :: xmax, xmin
#include <nag.h>
 void f06flf_ (const Integer *n, const double x[], const Integer *incx, double *xmax, double *xmin)
The routine may be called by the names f06flf or nagf_blas_darang.

## 3Description

f06flf returns the values ${x}_{\mathrm{max}}$ and ${x}_{\mathrm{min}}$ given by
 $xmax=maxi|xi|, xmin=mini|xi|,$
where $x$ is an $n$-element real vector scattered with stride incx. If $n<1$, then ${x}_{\mathrm{max}}$ and ${x}_{\mathrm{min}}$ are returned as zero.

None.

## 5Arguments

1: $\mathbf{n}$Integer Input
On entry: $n$, the number of elements in $x$.
2: $\mathbf{x}\left(*\right)$Real (Kind=nag_wp) array Input
Note: the dimension of the array x must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)×{\mathbf{incx}}\right)$.
On entry: the $n$-element vector $x$. ${x}_{\mathit{i}}$ must be stored in ${\mathbf{x}}\left(1+\left(\mathit{i}-1\right)×{\mathbf{incx}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
Intermediate elements of x are not referenced.
3: $\mathbf{incx}$Integer Input
On entry: the increment in the subscripts of x between successive elements of $x$.
Constraint: ${\mathbf{incx}}>0$.
4: $\mathbf{xmax}$Real (Kind=nag_wp) Output
On exit: the value ${x}_{\mathrm{max}}=\underset{i}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}|{x}_{i}|$.
5: $\mathbf{xmin}$Real (Kind=nag_wp) Output
On exit: the value ${x}_{\mathrm{min}}=\underset{i}{\mathrm{min}}\phantom{\rule{0.25em}{0ex}}|{x}_{i}|$.

None.

Not applicable.

## 8Parallelism and Performance

f06flf is not threaded in any implementation.