The routine may be called by the names c06fjf or nagf_sum_fft_complex_multid_sep.
3Description
c06fjf computes the multidimensional discrete Fourier transform of a multidimensional sequence of complex data values , where , and so on. Thus the individual dimensions are , and the total number of data values is .
The discrete Fourier transform is here defined (e.g., for ) by:
where , .
The extension to higher dimensions is obvious. (Note the scale factor of in this definition.)
To compute the inverse discrete Fourier transform, defined with in the above formula instead of , this routine should be preceded and followed by the complex conjugation of the data values and the transform (by negating the imaginary parts stored in ).
The data values must be supplied in a pair of one-dimensional arrays (real and imaginary parts separately), in accordance with the Fortran convention for storing multidimensional data (i.e., with the first subscript varying most rapidly).
This routine calls c06fcf to perform one-dimensional discrete Fourier transforms by the fast Fourier transform (FFT) algorithm in Brigham (1974).
4References
Brigham E O (1974) The Fast Fourier Transform Prentice–Hall
5Arguments
1: – IntegerInput
On entry: , the number of dimensions (or variables) in the multivariate data.
Constraint:
.
2: – Integer arrayInput
On entry: must contain (the dimension of the th variable), for .
Constraint:
, for .
3: – IntegerInput
On entry: , the total number of data values.
Constraint:
.
4: – Real (Kind=nag_wp) arrayInput/Output
On entry: must contain the real part of the complex data value , for ; i.e., the values are stored in consecutive elements of the array according to the Fortran convention for storing multidimensional arrays.
On exit: the real parts of the corresponding elements of the computed transform.
5: – Real (Kind=nag_wp) arrayInput/Output
On entry: the imaginary parts of the complex data values, stored in the same way as the real parts in the array x.
On exit: the imaginary parts of the corresponding elements of the computed transform.
6: – Real (Kind=nag_wp) arrayWorkspace
7: – IntegerInput
On entry: the dimension of the array work as declared in the (sub)program from which c06fjf is called.
Constraint:
.
8: – IntegerInput/Output
On entry: ifail must be set to , or to set behaviour on detection of an error; these values have no effect when no error is detected.
A value of causes the printing of an error message and program execution will be halted; otherwise program execution continues. A value of means that an error message is printed while a value of means that it is not.
If halting is not appropriate, the value or is recommended. If message printing is undesirable, then the value is recommended. Otherwise, the value is recommended. When the value or is used it is essential to test the value of ifail on exit.
On exit: unless the routine detects an error or a warning has been flagged (see Section 6).
6Error Indicators and Warnings
If on entry or , explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, and .
Constraint: .
An unexpected error has been triggered by this routine. Please
contact NAG.
See Section 7 in the Introduction to the NAG Library FL Interface for further information.
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library FL Interface for further information.
Dynamic memory allocation failed.
See Section 9 in the Introduction to the NAG Library FL Interface for further information.
7Accuracy
Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).
8Parallelism and Performance
c06fjf is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
c06fjf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.
9Further Comments
The time taken is approximately proportional to , but also depends on the factorization of the individual dimensions . c06fjf is faster if the only prime factors are , or ; and fastest of all if they are powers of .
10Example
This example reads in a bivariate sequence of complex data values and prints the two-dimensional Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which may be compared to the original data values.