NAG CL Interface
g05ztc (field_​fracbm_​generate)

Settings help

CL Name Style:


1 Purpose

g05ztc produces realizations of a fractional Brownian motion, using the circulant embedding method. The square roots of the eigenvalues of the extended covariance matrix (or embedding matrix) need to be input, and can be calculated using g05znc.

2 Specification

#include <nag.h>
void  g05ztc (Integer ns, Integer s, Integer m, double xmax, double h, const double lam[], double rho, Integer state[], double z[], double xx[], NagError *fail)
The function may be called by the names: g05ztc or nag_rand_field_fracbm_generate.

3 Description

The functions g05znc and g05ztc are used to simulate a fractional Brownian motion process with Hurst parameter H over an interval [0,xmax], using a set of equally spaced points. Fractional Brownian motion itself cannot be simulated directly using this method, since it is not a stationary Gaussian random field; however its increments can be simulated like a stationary Gaussian random field. The circulant embedding method is described in the documentation for g05znc.
g05ztc takes the square roots of the eigenvalues of the embedding matrix as returned by g05znc when cov=Nag_VgmBrownian, and its size M, as input and outputs S realizations of the fractional Brownian motion in Z.
One of the initialization functions g05kfc (for a repeatable sequence if computed sequentially) or g05kgc (for a non-repeatable sequence) must be called prior to the first call to g05ztc.

4 References

Dietrich C R and Newsam G N (1997) Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix SIAM J. Sci. Comput. 18 1088–1107
Schlather M (1999) Introduction to positive definite functions and to unconditional simulation of random fields Technical Report ST 99–10 Lancaster University
Wood A T A and Chan G (1994) Simulation of stationary Gaussian processes in [0,1]d Journal of Computational and Graphical Statistics 3(4) 409–432

5 Arguments

1: ns Integer Input
On entry: the number of steps (points) to be generated in realizations of the increments of the fractional Brownian motion. This must be the same value as supplied to g05znc when calculating the eigenvalues of the embedding matrix.
Note: in the context of fractional Brownian motion, ns represents the number of steps from a zero starting state. Realizations returned in z include this starting state and so ns+1 values are returned for each realization.
Constraint: ns1.
2: s Integer Input
On entry: S, the number of realizations of the fractional Brownian motion to simulate.
Constraint: s1.
3: m Integer Input
On entry: the size, M, of the embedding matrix, as returned by g05zmc or g05znc.
Constraint: mmax(1,2(ns-1)).
4: xmax double Input
On entry: the upper bound for the interval over which the fractional Brownian motion is to be simulated, as input to g05zmc or g05znc.
Constraint: xmax>0.0.
5: h double Input
On entry: the Hurst parameter, H, for the fractional Brownian motion. This must be the same value as supplied to g05znc in params[0], when the eigenvalues of the embedding matrix were calculated.
Constraint: 0.0<h<1.0.
6: lam[m] const double Input
On entry: contains the square roots of the eigenvalues of the embedding matrix, as returned by g05zmc or g05znc.
Constraint: lam[i-1]0, for i=1,2,,m.
7: rho double Input
On entry: indicates the scaling of the covariance matrix, as returned by g05zmc or g05znc.
Constraint: 0.0<rho1.0.
8: state[dim] Integer Communication Array
Note: the dimension, dim, of this array is dictated by the requirements of associated functions that must have been previously called. This array MUST be the same array passed as argument state in the previous call to nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc).
On entry: contains information on the selected base generator and its current state.
On exit: contains updated information on the state of the generator.
9: z[(ns+1)×s] double Output
On exit: contains the realizations of the fractional Brownian motion, Z. The jth realization, for the ith point xx[i-1], is stored in z[(j-1)×(ns+1)+i-1], for j=1,2,,s and i=1,2,,ns+1.
10: xx[ns+1] double Output
On exit: the points at which values of the fractional Brownian motion are output. The first point is always zero, and the subsequent ns points represent the equispaced steps towards the last point, xmax. Note that in g05zmc and g05znc, the returned ns sample points are the mid-points of the grid returned in xx here.
11: fail NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, ns=value.
Constraint: ns1.
On entry, s=value.
Constraint: s1.
NE_INT_2
On entry, m=value, and ns=value.
Constraint: mmax(1,2(ns-1)).
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_INVALID_STATE
On entry, state vector has been corrupted or not initialized.
NE_NEG_ELEMENT
On entry, at least one element of lam was negative.
Constraint: all elements of lam must be non-negative.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.
NE_REAL
On entry, h=value.
Constraint: 0.0<h<1.0.
On entry, rho=value.
Constraint: 0.0<rho1.0.
On entry, xmax=value.
Constraint: xmax>0.0.

7 Accuracy

Not applicable.

8 Parallelism and Performance

g05ztc is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
g05ztc makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example calls g05ztc to generate 5 realizations of a fractional Brownian motion over 10 steps from x=0.0 to x=2.0 using eigenvalues generated by g05znc with cov=Nag_VgmBrownian.

10.1 Program Text

Program Text (g05ztce.c)

10.2 Program Data

Program Data (g05ztce.d)

10.3 Program Results

Program Results (g05ztce.r)