g02mcc calculates additional parameter estimates following Least Angle Regression (LARS), forward stagewise linear regression or Least Absolute Shrinkage and Selection Operator (LASSO) as performed by g02macandg02mbc.
The function may be called by the names: g02mcc, nag_correg_lars_param or nag_lars_param.
3Description
g02mac and g02mbc fit either a LARS, forward stagewise linear regression, LASSO or positive LASSO model to a vector of observed values,
and an design matrix , where the th column of is given by the th independent variable . The models are fit using the LARS algorithm of Efron et al. (2004).
Figure 1
The full solution path for all four of these models follow a similar pattern where the parameter estimate for a given variable is piecewise linear. One such path, for a LARS model with six variables can be seen in Figure 1. Both g02mac and g02mbc return the vector of parameter estimates, , at points along this path (so ). Each point corresponds to a step of the LARS algorithm. The number of steps taken depends on the model being fitted. In the case of a LARS model, and each step corresponds to a new variable being included in the model. In the case of the LASSO models, each step corresponds to either a new variable being included in the model or an existing variable being removed from the model; the value of is, therefore, no longer bound by the number of parameters. For forward stagewise linear regression, each step no longer corresponds to the addition or removal of a variable;, therefore, the number of possible steps is often markedly greater than for a corresponding LASSO model.
g02mcc uses the piecewise linear nature of the solution path to predict the parameter estimates, , at a different point on this path. The location of the solution can either be defined in terms of a (fractional) step number or a function of the norm of the parameter estimates.
4References
Efron B, Hastie T, Johnstone I and Tibshirani R (2004) Least Angle Regression The Annals of Statistics (Volume 32)2 407–499
Hastie T, Tibshirani R and Friedman J (2001) The Elements of Statistical Learning: Data Mining, Inference and Prediction Springer (New York)
Tibshirani R (1996) Regression Shrinkage and Selection via the Lasso Journal of the Royal Statistics Society, Series B (Methodological) (Volume 58)1 267–288
Weisberg S (1985) Applied Linear Regression Wiley
5Arguments
1: – IntegerInput
On entry: , the number of steps carried out in the model fitting process, as returned by g02macandg02mbc.
Constraint:
.
2: – IntegerInput
On entry: , number of parameter estimates, as returned by g02macandg02mbc.
Constraint:
.
3: – const doubleInput
Note: the dimension, dim, of the array b
must be at least
.
On entry: the parameter estimates, as returned by g02macandg02mbc, with
, the parameter estimate for the th variable, for , at the th step of the model fitting process.
Constraint:
b should be unchanged since the last call to g02macorg02mbc.
4: – IntegerInput
On entry: the stride separating row elements in the two-dimensional data stored in the array b.
Constraint:
.
5: – const doubleInput
On entry: summaries of the model fitting process, as returned by g02macandg02mbc.
Constraint:
fitsum should be unchanged since the last call to g02macorg02mbc..
6: – Nag_LARSTargetTypeInput
On entry: indicates what target values are held in nk.
nk holds values for norm of the (scaled) parameters.
nk holds ratios with respect to the largest (scaled) norm.
nk holds values for the norm of the (unscaled) parameters.
nk holds ratios with respect to the largest (unscaled) norm.
If g02mac was called with or or g02mbc was called with then the model fitting routine did not rescale the independent variables, , prior to fitting the model and, therefore, there is no difference between or and or .
Constraint:
, , , or .
7: – const doubleInput
On entry: target values used for predicting the new set of parameter estimates.
Note: the dimension, dim, of the array nb
must be at least
.
On exit: the predicted parameter estimates, with , the parameter estimate for variable , at the point in the fitting process associated with , .
10: – IntegerInput
On entry: the stride separating row elements in the two-dimensional data stored in the array nb.
Constraint:
.
11: – NagError *Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).
6Error Indicators and Warnings
NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_ARRAY_SIZE
On entry, and
Constraint: .
On entry, and .
Constraint: .
NE_BAD_PARAM
On entry, argument had an illegal value.
NE_INT
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.
NE_OUT_OF_RANGE
On entry, or , .
Constraint: , for all .
On entry, , , and .
Constraint: , for all .
On entry, , and
Constraint: , for all .
On entry, , and
Constraint: , for all .
NE_REAL_ARRAY
b has been corrupted since the last call to g02macorg02mbc.
g02mcc is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
g02mcc makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.
9Further Comments
None.
10Example
This example performs a LARS on a set a simulated dataset with observations and independent variables.
Additional parameter estimates are obtained corresponding to a LARS step number of and . Where, for example, corresponds to the solution halfway between that obtained at step and that obtained at step .